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Abstract
This paper presents a novel geospatio-temporal pre-
diction framework called GSpartan to simultaneously
build local regression models at multiple locations. The
framework assumes that the local models share a com-
mon, low-rank representation, which makes them a-
menable to multi-task learning. GSpartan learns a set
of base models to capture the spatio-temporal variabil-
ities of the data and represents each local model as a
linear combination of the base models. A graph Lapla-
cian regularization is used to enforce constraints on the
local models based on their spatial autocorrelation. We
also introduce sparsity-inducing norms to perform fea-
ture selection for the base models and model selection
for the local models. Experimental results using histor-
ical climate data from 37 weather stations showed that,
on average, GSpartan outperforms single-task learning
and other existing multi-task learning methods in more
than 65% of the stations, which increases to 81% when
there are fewer training examples.

1 Introduction
Recent years have witnessed an explosive growth of
geospatio-temporal data generated by a wide array of
sensing technology and through large-scale scientific
simulations. Such data are prevalent across many dis-
ciplines, including geophysical and environmental sci-
ences [15, 3, 1], medical informatics [12], and computa-
tional fluid dynamics [29]. A geospatio-temporal pre-
diction task typically requires making predictions for
a response variable at multiple locations. For example,
climate scientists are interested to obtain future climate
projections at multiple sites for a geographical region of
interest. Similarly, in disease surveillance, researchers
are interested to estimate the rate of disease incidence
in multiple endemic areas [21]. A simple way to make
the predictions would be to fit a local model at each lo-
cation based on its historical data. This approach may
not be effective especially when there are limited train-
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ing examples available at each location. Furthermore,
it does not utilize data from nearby locations, which are
often useful due to Tobler’s first law of geography: “Ev-
erything is related to everything else, but near things
are more related than distant things.” [24].

To overcome this limitation, this paper presents
a multi-task learning (MTL) framework [4] for multi-
location prediction in geospatio-temporal data. MTL
is a widely-used approach for solving multiple, related
learning tasks by exploiting the common structure of the
problem. The two key properties of MTL [28] are that:
(i) the prediction tasks are not identical, so fitting a
single model for all tasks using their combined data may
not be effective; and (ii) the prediction tasks are related,
so their prediction models could benefit by sharing
information across the tasks. However, identifying the
relevant information to be shared among the tasks and
integrating them into a unified learning framework for
multi-location prediction are two key challenges that
must be addressed.

To address this problem, we present a novel multi-
location prediction framework called GSpartan, which s-
tands for GeoSPAtio-tempoRal mulTi-tAsk learNing.
GSpartan is developed based on the assumption that
the prediction models for all locations share a common
set of low-rank base models, where each base model may
represent a macroscale phenomenon that potentially ex-
plains the variability of the data. The local model at
each location is constructed as a linear combination of
these base models. A graph Laplacian regularization
is introduced to capture the spatial autocorrelation of
the data, thus providing a natural way to specify the
relationships among the prediction tasks. To ensure in-
terpretability of the models, we also add sparsity and
non-negativity constraints into the GSpartan formula-
tion. We evaluated the performance of GSpartan a-
gainst several baseline methods on climate data from
37 randomly chosen weather stations in Canada. Our
experimental results for predicting monthly precipita-
tion showed that, on average, GSpartan outperformed
single-task learning (STL) and two other existing multi-
task learning (MTL) methods in at least 65% of the sta-
tions. The improvement of GSpartan increases to more



than 81% of the stations if the training data available
at each station is limited to only 2 years.

2 Related Works
Multi-task learning (MTL) is a well-known machine
learning paradigm for solving multiple, related predic-
tion tasks simultaneously by considering their shared
information [4]. The rationale for using MTL is that
the information propagated between related tasks may
enhance the overall accuracy if the models are trained
jointly instead of independently. The MTL framework
has been successfully applied to various learning prob-
lems including classification[28], regression [25][34], and
clustering[17]. In general, the MTL methods can be
classified into the following categories:

MTL based on Low-rank Representation.
This category of methods assume that the underlying
models share a low-rank representation, which is com-
monly used in different machine learning methods[5].
For example, Chen et al. [8][6] and Gong et al. [16] as-
sumed that the models have a common low-rank struc-
ture as well as a group sparseness constraint that iden-
tifies the outlying tasks. Argyriou et al. [2] and Kang
et al. [18] projected the features into a low dimensional
space in which the predictive models for different tasks
are inferred and the discriminant features are selected
using an ℓ2,1 norm. Kumar et al. [19] assumed that each
task model is a linear combination of base models, where
the coefficients of the linear combination along with the
base models are coupled in a multiplicative way. Chen
et al. [7] incorporated both additive and multiplicative
coupling into their formulation using a low-dimensional
feature map shared across the different tasks. Although
these methods incorporate low-rank representation, un-
like GSpartan, they do not consider the task relation-
ships provided by the domain (e.g., spatial proximity
information in geospatio-temporal modeling).

MTL based on Explicit Task Relationship.
This category of methods explicitly incorporates the
task relationships of the domain into their MTL for-
mulations. The task relationships are typically encoded
in a matrix, whose elements represent the similarity be-
tween a pair of tasks[13]. For example, Zhou et al. [34]
and Xu et al. [25] employed a task relationship matrix
to ensure smoothness in time series prediction. Zhang
et al. [31] and Saha et al. [23] proposed MTL formu-
lations that simultaneously learn the task relationship
and task-specific models. This category of methods is
useful when the task relationships are clearly defined or
provided by the domain.

MTL based on Shared Common Parameters.
There are several ways for sharing model parameters
across the tasks. For example, Evgeniou et al. [14] and

Xu et al. [25] assumed the task models are composed
of a common term and a task specific term, where the
common term is shared across different tasks. Yu et al.
[30] proposed a multi-task Gaussian process where the
prior parameters are shared across different generative
processes. Lee et al. [20] and Daume et al. [11]
provided MTL formulations that allow for sharing of
hyperparameters between distributions of different task
models.

MTL based on Hybrid Information Sharing.
More recently, there have been some efforts to combine
some of the MTL methods described above. For ex-
ample, Xu et al. [25] incorporated both common pa-
rameters and explicit task relationships into their MTL
formulation. In another work, Xu et al. [26] combined
low-rank representation with explicit task relations in-
to their formulation. Their framework was designed to
model the heterogeneity between patients in healthcare
data. The GSpartan approach proposed in this paper
extends the previous work in [26] to incorporate both
task relation and low-rank representation into an MTL
formulation for geospatio-temporal data.

3 Preliminaries
Let S ⊂ ℜ2 be a set of geo-referenced locations, where
each location s ∈ S is associated with a set of temporal
fields. One of the fields is designated as the response
variable we are interested in predicting, while the rest
are considered predictor variables. For instance, in cli-
mate modeling, the response variable may correspond
to monthly precipitation values recorded at a weath-
er station whereas the predictor variables correspond
to outputs generated from a global or regional climate
model [9]. An example of the multi-location prediction
task here is to infer future monthly values of precipita-
tion for all the locations.

Formally, consider a geospatio-temporal data set
D = {(X1, y1), (X2, y2), · · · , (X|S|, y|S|)}, where each
tuple, (Xs, ys), denote the temporal fields at location
s. Let Xs ∈ Rns×d = [xT

s,1, · · · , xT
s,ns

] be the matrix
of predictor variables and ys ∈ Rns be the time series
for the response variable observed at the discrete time
points 1, 2, · · · , ns.

For single-task learning (STL), each location s is
treated as a separate learning task. Let ns be the
number of training examples available for task s and
d be the number of predictor variables. STL seeks to
learn a (local) task model fs(x; ws) for each location in
such a way that the following loss function is minimized:

min
W

|S|∑
s=1

ns∑
i=1

ℓs

[
fs(xs,i; ws), ys,i

]



where W = [w1, ..., w|S|] ∈ Rd×|S| denote the model
parameters and ℓs(·) represents the loss function for task
s. For brevity, we consider only task models of the form
fs(xs; ws) = xT

s ws with a squared loss function.

4 Proposed GSpartan Framework
This section presents our proposed GSpartan framework
for multi-location prediction. The framework was de-
signed to satisfy the following three requirements:

1. It should learn a low-rank representation of the
task models. The low-rank representation, defined
by a set of base models, represents the possible
macroscale phenomena that could help explain the
temporal variability of the data.

2. It should incorporate domain knowledge about the
spatial autocorrelation of the response variable
among the various locations.

3. To ensure interpretability, each base model should
depend only on a small subset of the predictor
variables. In addition, each local model should be
comprised of a small number of base models.

The following objective function is used in GSpartan to
train the local models jointly:

min
W

|S|∑
s=1

ns∑
i=1

ℓs

[
fs(xs,i; ws), ys,i

]
+ Ω(W)

where Ω(W) is a regularization term. In the following,
we will discuss how to formulate the objective function
to meet the requirements stated above.
Low-rank Representation: We assume that the local
models can be expressed as a product of two low-
rank matrices, i.e., W = UV, where U ∈ Rd×k and
V ∈ Rk×|S|. The matrix U is a feature representation
of the base models while V expresses the weighted
combination of the base models that form the local
model at each location. Specifically, ui is a column
vector in U that represents the feature vector for the
i-th base model, while vj is a column vector in V that
represents the weights of the base models defining the
j-th local model.
Task Relation Matrix: We employ a graph Laplacian
regularization to incorporate information about the
spatial autocorrelation between locations. Let A be the
task relation matrix, where Ai,j measures the spatial
autocorrelation between locations i and j. The graph
Laplacian regularizer can be written as follows:

Ωr(W) =
|S|∑

i,j=1
Ai,j∥wi − wj∥2

2 = Tr
[
W(D − A)WT

]

where D is a diagonal matrix with Di,i =
∑

j Aij . Intu-
itively, if Ai,j is large, the graph Laplacian regularizer
term will also be large unless wi is similar to wj . Thus,
the graph Laplacian is simply a re-statement of Tobler’s
first law of geography.
Model Interpretability: Sparsity constraints can
be imposed to ensure that each base model depends
only on a small subset of the predictor variables and
each task model is a linear combination of a few base
models. To improve interpretability, the coefficients of
the weighted linear combination should also be non-
negative. To satisfy these requirements, the following
L1 regularization penalty is added to the objective
function:

Ωs(W) = λ1∥V∥1 + λ2∥U∥1

s.t. W = UV, V ≽ 0

where λ1 and λ2 are the regularization parameters. The
notation V ≽ 0 implies all elements of V must be non-
negative.

Putting everything together, we can now ex-
press our objective function for GSpartan (assuming a
squared loss function) as follows:

min
W,U,V

1
2

|S|∑
s=1

∥Xsws − ys∥2
2 + λ1∥V∥1 + λ2∥U∥1

+λ3

2
Tr(W(D − A)WT )

s.t. V ≽ 0, W = UV

Since W = UV, the objective function reduces to
the following simplified expression:

min
U,V

1
2

|S|∑
i=1

∥XsUvi − ys∥2
2 + λ1∥V∥1

+λ2∥U∥1 + λ3

2
Tr(UV(D − A)VT UT )(4.1)

s.t. V ≽ 0

The preceding constrained optimization problem
can be solved using a block coordinate descent ap-
proach, by alternately solving for U and V. Details
for solving each step efficiently is given below.
Solve U, given V:
When V is fixed, the objective function can be simplified
as follows:

min
U

1
2

|S|∑
i=1

∥XsUvi − ys∥2
2 + λ2∥U∥1(4.2)

+ λ3

2
Tr(UV(D − A)VT UT )



This optimization problem can be efficiently solved
using the proximal gradient descent method. Proxi-
mal gradient descent is commonly used to solve opti-
mization problems containing non-differentiable compo-
nents. The algorithm also has faster convergence com-
pared to other methods such as subgradient descen-
t. The basic idea here is to minimize a correspond-
ing upper bound function of the original objective func-
tion [22]. Based on standard assumptions such as Lips-
chitz continuity on the partial gradient of the differen-
tiable part of the objective function, we can use a tighter
upper bound to approximate the original objective func-
tion. Here, we will use Prox-linear [27] to solve our op-
timization problem, with the following update formula:

Uk = argmin
U

(U − Ûk−1)T ĝk
U(4.3)

+
τk−1

U

2
∥U − Ûk−1∥2

F + λ2∥U∥1,

where

ĝk
U =

|S|∑
s=1

(
− XT

s ysvT
s + XT

s XsUvsvT
s

)
+ λ3UV(D − A)VT

and

Ûk−1 = Uk−1 + ωk−1
U (Uk−1 − Uk−2)

The solution for problem (4.3) is given by

Uk = Sτk−1
U

/λ2
(Ûk−1 − ĝk−1

τk−1
U

)(4.4)

where Sα(t) = sign(t)(max(|t| − α, 0) is a component-
wise soft-thresholding function.
Solve V, given U
Similarly, when U is fixed, the objective function be-
comes:

min
V

1
2

|S|∑
i=1

∥XsUvi − ys∥2
2 + λ1∥V∥1(4.5)

+ λ3

2
Tr(UV(D − A)VT UT )

The update formula for V using proximal gradient
descent approach is:

Vk = argmin
V

(V − V̂k−1)T ĝk
V(4.6)

+
τk−1

V

2
∥V − V̂k−1∥2

F + λ1∥V∥1

where

ĝk
V = P + λ3UT UV(D − A)

The s-th column of matrix P is given by

ps = −UT XT
s ys + UT XT

s XsUvs

and
V̂k−1 = Vk−1 + τk−1

V (Vk−1 − Vk−2)

The solution for problem (4.6) is given by

Vk = Sωk−1
V

/λ2
(V̂k−1 − ĝk−1

τk−1
V

)(4.7)

A further projection step is needed to ensure that the
elements of V are non-negative.

Note that the learning rates τk−1
U and τk−1

V are
provided by the Lipschitz continuous constant of the
partial gradient ĝk

U and ĝk
V , respectively. The learning

rates are given in Theorems 1 and 2 below. The
extrapolation term ω is selected to be 0 ≤ ωk ≤
δω

√
τk−2

τk−1 for δω < 1.

Theorem 1. The partial gradient ĝU is Lipschitz con-
tinuous with the constant

τU =
|S|∑
s=1

∥XT
s Xs∥∥vsvT

s ∥ + λ3∥V(D − A)VT ∥

Proof. For any U and U∗ ∈ Rd×k,

∥ĝU − ĝU∗∥

=
∥∥∥∥ |S|∑

s=1

(
XT

s XsUvsvT
s − XT

s XsU∗vsvT
s

)
+ λ3(U − U∗)V(D − A)VT

∥∥∥∥
≤

|S|∑
s=1

∥XT
s XsUvsvT

s − XT
s XsU∗vsvT

s ∥

+ λ3∥U − U∗∥∥V(D − A)VT ∥

≤
|S|∑
s=1

∥XT
s Xs∥∥vsvT

s ∥∥U − U∗∥

+ λ3∥U − U∗∥∥V(D − A)VT ∥

= ∥U − U∗∥

 |S|∑
s=1

∥XT
s Xs∥∥vsvT

s ∥ + λ3∥V(D − A)VT ∥


Theorem 2. Assuming ∥Xs∥ ≤ R, the partial gradient
ĝV is Lipschitz continuous with the constant

τV = ∥U∥2R2 + λ3∥UT U∥∥D − A∥



Proof. For any V and V∗ ∈ Rk×S ,

∥ĝV − ĝV ∗∥

=
∥∥∥∥P + λ3UT UV(D − A) − P∗

− λ3UT UV∗(D − A)
∥∥∥∥

≤ ∥P − P∗∥ + λ3∥UT U∥∥D − A∥∥V − V∗∥

=
|S|∑
s=1

∥UT XT
s XsU(vs − v∗

s)∥

+λ3∥UT U∥∥D − A∥∥V − V∗∥

≤
|S|∑
s=1

∥UT XT
s XsU∥∥vs − v∗

s∥

+λ3∥UT U∥∥D − A∥∥V − V∗∥

≤ ∥U∥2R2
|S|∑
s=1

∥vs − v∗
s∥

+λ3∥UT U∥∥D − A∥∥V − V∗∥
= ∥V − V∗∥

(
∥U∥2R2 + λ3∥UT U∥∥D − A∥

)
A summary of the GSpartan framework is shown in

Algorithm 1 below.

Input: Dataset D = {(X1, y1), ..., (XS , yS)},
Task relation matrix A, parameters λ1, λ2, λ3;
Initialize: Randomly generate U and V and set
k = 1
Block coordinate descent:
while not converge do

Solve U given V:
Compute τk

U using Theorem 1
Update Uk using Equation (4.4)
Solve V given U:
Compute τk

V using Theorem 2
Update Vk using Equation (4.7)
k = k + 1

end
return {Uk, V k}

Algorithm 1: Pseudocode for GSpartan framework

Theorem 3. Let {Uk, Vk} be the sequence generated
by Algorithm 1 with 0 ≤ ωk ≤ δω

√
τk−2

τk−1 for δω < 1.
Then the sequence of {Uk, Vk} will converge.

The proof of convergence given by Theorem 3 can be
found in Lemma 2.2 of [27].

5 Experimental Evaluation
This section presents the experiments performed to
evaluate the effectiveness of the proposed GSpartan

framework.

5.1 Dataset Description We evaluated the perfor-
mance of GSpartan on climate data from 37 randomly
chosen weather stations in Canada1. We use monthly
precipitation data from the weather stations as the re-
sponse variable. The precipitation data spans a 40-year
period from January, 1961 to December, 2000. The pre-
dictor variables for building the local models were ob-
tained from NCEP-reanalysis2 data, which is a coarse-
scale global environmental data that integrates observa-
tions with output from a numerical weather prediction
model. There are 26 predictor variables, including mean
temperature at 2 meters, mean sea level pressure, 500
hPa geopotential height, and near surface relative hu-
midity3. We deseasonalize the precipitation time series
by subtracting each monthly values with the average
value for that month over the entire 40 year period. We
then create 10 versions of the training set for each loca-
tion by varying the length of the training period from 2
to 11 years. For example, the first version uses monthly
precipitation data from 1961 and 1962 for training and
the remaining 38 years for testing while the last ver-
sion uses the first 11 years of monthly precipitation for
training and the remaining 29 years for testing.

5.2 Baseline Methods We compared the perfor-
mance of GSpartan against the following baseline.

• LASSO: We applied LASSO regression to the data
set at each location independently. The Lasso
results serve as a baseline for single-task learning.

• MRMTL: The mean regularized MTL (MRMTL)
is an algorithm developed in [14] based on the
assumption of shared common parameters among
task models. Specifically, the objective function of
MRMTL is given by

min
W

∑S

s=1
∥Xsws − ys∥2

2 + ρ1∥W∥1

+ ρ2
∑S

s=1

∥∥∥∥ws − 1
S

∑S

i=1
wi

∥∥∥∥2

2

We use the MRMTL implementation given in the
MALSAR software package [33]. Note that instead
of using ℓ2 norm on W as the original paper in [14],
we use ℓ1 norm on W for a fair comparison.

1http://climate.weather.gc.ca/
2http://www.cccsn.ec.gc.ca/?page=pred-hadcm3
3A complete list of the features and their description is

available at http://www.cccsn.ec.gc.ca/?page=pred-help



• SLMTL: This is an MTL algorithm proposed
in [6], which assumes that the tasks are related us-
ing an incoherent rank-sparsity structure. Unlike
GSpartan, SLMTL does not explicitly consider the
relationships among tasks (e.g., spatial autocorre-
lation between locations). The objective function
for SLMTL is given by [6],

min
W

∑S

s=1
∥Xsws − ys∥2

2 + γ∥P∥1

s.t. W = P + Q, ∥Q∥∗ ≤ τ

where W ∈ Rd×S and W = [w1, ..., wS ]. We use
the SLMTL implementation provided by the MAL-
SAR software package [33] for our experiments.

In addition to the three baseline algorithms, we also
investigate the following two variants of GSpartan.

• GSpartan-NTR: In this variant, we remove the
graph Laplacian regularizer from the objective
function given in Equation (4.1). This allows us
to evaluate the importance of incorporating spatial
autocorrelation into the framework.

min
W,U,V

1
2

∑S
s=1 ∥Xsws − ys∥2

2 + λ1∥V ∥1 + λ2∥U∥1

s.t. V ≽ 0, W = UV

• GSpartan-norm: In [32] a normalized graph
Laplacian regularizer was used to facilitate transfer
of information:∑S

i,j=1
Ai,j∥wi/

√
Di,i − wj/

√
Dj,j∥2

2.

We will compare the normalized graph Laplacian
against the unnormalized one used in GSpartan.

5.3 Task relationship matrix We use the inverse
of a modified variogram measure to estimate the spatial
autocorrelation between locations. Variogram is a
measure developed in spatial statistics to determine the
spatial dependence between a pair of locations [10].
The measure is computed based on the variance of the
difference in field values for two locations:

Ai,j =
{

1 if i = j
1

var(yi−yj) otherwise

where var(z) denote variance of z. Since we have time
series data at each location, we compute var(yi − yj)
using monthly precipitation from the first year (1961).

5.4 Experimental Results We evaluate the perfor-
mance of various methods on the test set in terms of

their root-mean-square-error (RMSE):

RMSE =
√∑n

i
(yi − ŷi)2/n

where n is the number of test points. We set λ1 = 0.001,
λ2 = 0.001, λ3 = 0.1 and k = 5 as the default
parameters for GSpartan on all datasets. Figure 1
compares the RMSE for different methods when applied
to the first version of the data set (which has 2 years
of data for training and 38 years of data for testing).
The horizontal axis of the plot corresponds to indices
for the 37 weather stations. The results suggest that
GSpartan outperforms other baselines for most of the
stations. In fact, looking at Table 1, which summarizes
the number of wins achieved by each method compared
to others, GSpartan outperforms other baselines in at
least 24 (65%) out of 37 stations. Furthermore, by
comparing LASSO against other methods, we observe
that MTL is generally better than STL especially when
there are limited training data available.

To investigate the strength of GSpartan, Figure 2
compares its RMSE against other variants of GSpartan.
Observe that GSpartan performs no worse than its vari-
ants for most of the stations.Furthermore, the results in
Table 1 suggest that GSpartan outperforms GSpartan
-NTR in 36 out of 37 stations, which demonstrates the
importance of incorporating spatial autocorrelation in-
to the geospatio-temporal MTL framework. In addition,
since GSpartan-NTR outperforms other MTL method-
s in at least 23 stations, this shows the importance of
using low-rank representation for modeling the data.

The previous results were obtained using a data set
with limited training examples (2 years for training and
38 years for testing). We next investigate the relative
performance of GSpartan against other methods as the
training set size increases from 2 to 11 years. Specif-
ically, we compare the percentage of stations in which
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Figure 1: Comparison of GSpartan against three base-
line methods



Table 1: Win-loss table comparing performance of various methods when applied to the data set with limited
training examples (2 years of training data and 38 years of test data).

GSpartan GSpartan-norm GSpartan-NTR MRMTL SLMTL LASSO
GSpartan - 36 35 24 25 30

GSpartan-norm 1 - 8 23 24 30
GSpartan-NTR 2 29 - 23 24 30

MRMTL 13 14 14 - 14 20
SLMTL 12 13 13 23 - 23
LASSO 7 7 7 17 14 -
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Figure 2: Comparison of GSpartan against its variants

the RMSE for GSpartan is lower than that for other
methods. For example, if GSpartan outperforms anoth-
er method in 32 out of 37 stations, the ratio is 0.865.
Figure 3 shows the results when the training set size in-
creases. The horizontal axis of the plot corresponds to
the index of the data set (which is equivalent to number
of training years), while the vertical axis correspond-
s to the GSpartan outperform ratio. The result shows
that, on average, GSpartan outperforms the baseline
methods for 65% of the stations, and increases to 81%
when there are fewer training examples. This confirms
our hypothesis that GSpartan can effectively train local
models when there are limited training examples.

In addition, by comparing GSpartan with
GSpartan-NTR, we can see that incorporating s-
patial autocorrelation enhances the performance of
GSpartan irrespective of the training set size. By
comparing GSpartan against GSpartan-norm, we also
see that a normalized graph Laplacian regularizer
indeed degrades the performance of GSpartan . This
is because the normalization attenuates the spatial
autocorrelation among the tasks, which causes the
task relationship to be ineffective. Finally, comparing
the results for GSpartan against the two baseline
MTL algorithms, it appears that when the training
set is small, GSpartan outperforms both MRMTL
and SLMTL. However, with increasing training set

size, both MRMTL and SLMTL perform better than
GSpartan. One possible explanation is that, when there
are enough labeled examples available at each station,
incorporating the spatial autocorrelation information
(which was computed using the first year training data
only) might adversely affect the local models.
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Figure 3: Performance comparison between GSpartan
against baseline methods as training set size increases.

5.5 Sensitivity Analysis Since there are four pa-
rameters (λ1, λ2, λ3 and k) that must be tuned in
GSpartan, this subsection analyzes the performance of
the framework as each parameter is varied. For this
experiment, we use create a data set with 30 years of
training and 10 years of testing. The results using other
data sets are quite similar, so we omit them due to lack
of space. Figure 4 shows the results of our experiment.
The horizontal axis corresponds to each index location
while the vertical axis represents RMSE values. The re-
sults from the figure show that GSpartan is not sensitive
to changes in λ1 and λ2 for all 37 locations (see Figures
4a and 4b). Furthermore, Figure 4c showed that small-
er values of λ3 should be preferred. Figure 4d showed
that GSpartan is not that sensitive to the number of
base models, k, for many locations. However, for those
locations where k is sensitive, a small value of k tends
to produce lower RMSE.
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(c) Sensitivity Test on λ3
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Figure 4: Results of sensitivity analysis on λ1, λ2, λ3, and k for GSpartan. The horizontal axis represents the
index of a station and the vertical axis corresponds to the RMSE value.

6 Conclusion
This paper presents a novel geospatio-temporal multi-
task learning framework called GSpartan for multi-
location prediction. GSpartan assumes that the local
models share a common low-rank representation. The
framework also enables domain-specific constraints such
as spatial autocorrelation to be integrated into its
formulation. Experimental results on a real world
climate data set showed that the proposed framework
outperformed other baseline algorithms especially when
there are limited training examples available at each
location.

For future work, we plan to correlate the discovered
base models against some of the known climate phe-
nomena. In addition, to improve its scalability, we will
extend the methodology to an online multi-task learn-
ing setting. Finally, we will also investigate techniques
to extend the approach to multivariate response pre-
dictions, in which the response variables at a location
are potentially correlated (e.g., maximum or minimum
temperature, humidity, and precipitation).
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