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Abstract—The complementary item recommender system (CIRS)
recommends the complementary items for a given query item.
Existing CIRS models consider the item co-purchase signal as
a proxy of the complementary relationship, due to the lack of
human-curated labels from the huge transaction records. These
methods represent items in a complementary embedding space
and model the complementary relationship as a point estimation
of the similarity between items vectors. However, co-purchased
items are not necessarily complementary to each other. For
example, customers may frequently purchase bananas and bottle
water within the same transaction, but these two items are
not complementary. Hence, using co-purchase signals directly
as labels will aggravate the model performance. On the other
hand, model evaluation will not be trustworthy if the labels for
evaluation are not reflecting the true complementary relatedness.
To address the above challenges from noisy labeling of the co-
purchase data, we model the co-purchases of two items as a
Gaussian distribution, where the mean denotes the co-purchases
from the complementary relatedness, and covariance denotes
the co-purchases from the noise. To do so, we represent each
item as a Gaussian embedding and parameterize the Gaussian
distribution of co-purchases by the means and covariances from
item Gaussian embedding. To reduce the impact of the noisy
labels during evaluation, we propose an independence test-
based method to generate a trustworthy label set with certain
confidence. Our extensive experiments on both the publicly
available dataset and the large-scale real-world dataset justify
the effectiveness of our proposed model in complementary item
recommendations compared with the state-of-the-art models.

Index Terms—Recommender System, Gaussian embedding,
Complementary Item Recommendation

I. INTRODUCTION

Item recommendation tasks in e-commerce industry are
essential for improving user experiences by recommending
related items to a query item. Different types of recommender
systems have been proposed to address use cases under various
aspects of the relatedness, such as substitutional items (SI)
recommendation and complementary items (CI) recommen-
dation [1] [2] [3]. In economics, a complementary item is a
type of items whose appeal increases with the popularity of
its complement. Therefore, complementary items usually have
higher chances to be purchased together to complete the same
shopping goal. For example, Shampoo and Conditioner
are complementary to each other in order to fulfill the needs
of shower supplies; similarly, TV and TV Mount are also
complementary items for TV entertainment purposes. While
SI recommendations have been extensively studied in the past

[4] [5], complementary item recommender systems (CIRS)
become increasingly important as they provide the customers
with the opportunities to explore and interact with items
that are complementary with what they have been interested
in, and hence complete the customers’ shopping journey by
suggesting purchasing those items together.

Although the complementary relationship between items
seems well-defined, it is impossible to gain the ground truth
of the complementary relationship for all item pairs from
the catalogue. To mitigate the labeling challenge, a common
practice is to indicate the complementary relationship using the
co-purchase signal of two items [1] [2] [6] [3]. These CIRS
models usually represent each item as an embedding vector
under co-purchase space, and the similarity between the items
in the latent space reflects the frequency of co-purchases, and
hence the complementary relatedness under their assumptions.

However, co-purchased items are not necessarily comple-
mentary to each other. For example, certain popular items
can appear in many transactions and hence be co-purchased
frequently with items that are not complementary. Simply
removing these popular items from all recommendations will
hurt the results for item pairs with real complementary rela-
tions and decrease the business metrics (e.g., Gross Merchan-
dise Value) of the recommender systems. Recently, Hao et
al. proposed to annotate the co-viewed but not co-purchased
item pairs as the negative labels and consider the co-purchased
but not co-viewed item pairs as positive labels for learning
[7]. However, co-view data are noisy by themselves as well.
Cleaning noisy labels with another noisy data source is not
trustworthy in general. Identifying and cleaning co-purchased
non-complementary items is not feasible due to the lack
of ground truths. Hence, it is challenging to learn the real
complementary relationships between items pairs and evaluate
the recommendation results with the noisy labels.

To address the noisy label issue during training, we assume
that the co-purchases of items are composed by two compo-
nents: (a) co-purchases motivated by the true complementary
relationships, and (b) co-purchases from other motivations
(say, the noise). We directly model component (a) by the
similarities or distances of item embeddings under the com-
plementary space, and component (b) by the variance around
(a). Hence, the co-purchase data can be assumed as a Gaussian
distribution, where the mean is the co-purchases from the true



complementary, and the variance is the co-purchases from
the noise. To achieve this, instead of representing items as
item embeddings under point estimation, we employ Gaussian
embeddings [8] with a mean vector and a covariance matrix
to as item representations. The Gaussian distribution of the
co-purchase data can be naturally parameterized by the item
Gaussian embeddings and fit into the noisy co-purchase data
by optimizing the expected likelihood [9] between Gaussian
embeddings. To this end, works such as [1] [2] [6] [3]
are special cases of this assumption which assume that all
co-purchases occur under complementary relationships. They
represent each item as a vector in the embedding space and the
co-purchases or complementary relationships are calculated by
the similarities between item embeddings.

To address the noisy label issue during evaluation, we
follow the definition of complementary items and develop
an independence test-based method to surface the item pairs
with more complementarity as positive labels for evaluation.
Given a pair of co-purchased items, we treat the purchase of
the individual item as a binary random variable and study
the difference between observed co-purchase frequency and
the expected co-purchase frequency under the independence
assumption via Chi-squared independence test [10]. Based
on the definition of complementary items in economics, the
purchases of them should be dependent and the observed
co-purchase frequency should be larger then the expected
independent co-purchase frequency due to the synergy effect
between complementary items. A set of co-purchase labels
could be generated for evaluation by providing a predefined
p-value, which controls the certainty of the label selection
from the noisy observation. Although it is promising to use
the selected label as the ground truth labels for training as
well, the coverage of this set over the item catalogue is very
limited and hence not feasible to be generalized for training
purpose.

In summary, we developed a label Noise-rEsistAnT CIRS
model named NEAT, which learns the complementary re-
lationship by Gaussian embedding representation. In order
to accurately evaluate the model performance, we created
a trustworthy label set with controllable confidence via an
independence test. Extensive experiments are conducted on
the publicly available Instacart dataset and a real-world large-
scale dataset collected from www.walmart.com. The results
demonstrated the effectiveness of NEAT in modeling comple-
mentary relationships from co-purchase data, and the superior
performance over the state-of-the-art models in CIRS.

The rest of the paper is structured in the following: the
related work on CIRS is discussed in Section II. Section III
describes the details of the proposed method NEAT and Sec-
tion IV presents the trustworthy label creation for evaluation.
Experiment settings and results are reported in Section V. In
the end, we conclude the paper in Section VI.

II. RELATED WORK

A. Embedding-based Complementary Item Recommendations

Embedding-based CIRS are most popular in recent work of
CIRS. They treat each item as a vector in the embedding space
and estimate the complementary relationship based on the dis-
tance between item vectors. The first embedding-based method
for CIRS was proposed in [11], which models the co-purchase
of items by the similarity between the embeddings of the co-
purchased items under the effective training paradigm of Skip-
gram with Negative Sample (SGNS) [12]. Wan et. al. extended
[11] by incorporating user behavior into the modeling of the
item-level complementary relationship with the user and item
embeddings learned jointly [6]. Besides of modeling the item
embeddings with co-purchase data using SGNS, co-purchase
data are also represented as item graphs in [1] [2] [3] and
identifying the complementary relationships between items
are treated as the link prediction tasks between item nodes.
They use the co-purchase records as labels for link predictions
based on the distance between item embeddings. To further
improve the complementary recommendations, different types
of auxiliary data are incorporated into the modeling. Multi-
modal data of items such as item descriptions and images
are also included in [13] to learn the multi-modal represen-
tations of items. The distance between vector embeddings of
two co-purchased items in each modal’s embedding space is
minimized for complementarity measurement. Xu et al. in
[14] considers the last l purchased items as the context to
learn the attention-based encoder and represents the comple-
mentary relationship via the inner product between encoded
item embeddings. This work is reduced to the Item2Vec
model in [11] without the context of the last l items in
the history. Although the P-companion model in [7] pre-
processes the co-purchase labels by removing co-view data and
leverage the product-type information to improve the diversity,
it still models the complementary relationship via the distance
between item embeddings without addressing the noise in the
data by parameters. Despite of various auxiliary information
such as graph structure, multi-modal data source, shopping
context and product taxonomy, all these models are trying to
build item embeddings in co-purchase space, and model the
co-purchase data using the similarity or distance between the
co-purchased items. Hence, these models will suffer from the
noisy labels for learning complementary relations.

In addition to the item-level complementary recommenda-
tion models, many in-basket recommendation models try to
address the complete-the-basekt tasks. For example, BasConv
[15] leverages the heterogeneous graph embeddings to perform
the in-basket recommendations; multiple intents in the same
basket are modeled in [16] to the in-basket recommendation.
Although these models capture the co-purchase pattern in the
same basket to complete the basket, items in the same basket
might not be complementary, for instance, a basket containing
both grocery shopping and the household shopping. Even
the items with the same shopping intent like grocery shop-
ping might not be complementary. The goal of the in-basket



recommendations focuses on completing the basket which
cover various types of recommendations such as re-purchase,
popular items and user preference in addition to co-purchases
and complementary items. Hence, in-basket recommendation
is out of the scope of the discussion in this paper.

B. Gaussian Embedding in Recommender Systems

Gaussian embedding [8] has been applied in recommender
system in recent years, e.g., Gaussian embeddings for collab-
orative filtering [17] and convolutional Gaussian embeddings
for personalized item recommendations [18]. They mainly use
the Gaussian embeddings to address the different confidences
of user/item representations introduced by the lack of user/item
information or contradictions between user/item behaviors
(e.g., item ratings and reviews by users). However, these
methods were not designed for CIRS and hence not applicable
to address the unique challenges from CIRS.

III. LABEL NOISE-RESISTANT COMPLEMENTARY ITEM
RECOMMENDER SYSTEMS

In this section, we first define the co-purchase records from
transactions and then go through the details of modeling item-
level complementary relationship as well as item representa-
tion for recommendations.

A. Co-purchase Records from Transactions

Let v denote an item from the item set V and b denote a
transaction (a set of purchased items) from the transactions
set B where b = {v1, v2, ...}. A tuple (vi, vj), vi 6= vj ,
from the same transaction b can be considered as a pair of
co-purchased items (i.e., a co-purchase record). To further
distinguish the role of co-purchased items during training,
inference and evaluation, we treat the first item in an item
pair (vi, vj) as the query item q and the second item as the
recommendation of q.

B. Learning Item-level Complementary Relationship

Learning the complementary relationship with the co-
purchase data as labels could suffer from the label noisy, as
co-purchased items are not necessarily complementary items.
Previous CIRS models simply treat the co-purchased items as
the positive label of complementary relationships and fit them
by the distance between item embeddings in the embedding
space. Formally, given a pair of co-purchased items (q, v), they
try to maximize the density of a particular normal distribution
at zero: N

(
0;µq − µv,Σzero

)
∝ −

(
µq − µv

)T (
µq − µv

)
,

where Σzero is zero and µ is the item embeddings, to bring
the item embedding (µq,µv) closer in the embedding space.
Because these models do not consider the noise in the co-
purchase labels, the distance between item embeddings is
hardly reflecting the complementary relationship, even it might
be a good approximation for co-purchases.

To address the label noise issue for learning complementary
relationship, as aforementioned, we model the co-purchase
data as a Gaussian distribution, where the mean is the co-
purchases from the true complementary, and the variance is the

co-purchase from the noise. In order to do so, we consider each
item v ∈ V as a Gaussian embedding N (x;µv,Σv), where
µv ∈ Rd is the mean vector and Σv ∈ Rd×d is the covariacne
matrix in the d-dimensional embedding space, which models
the variation in the co-purchase behavior of v. While the inner
product between vectors of two items is used to model their
complementary relationship from the co-purchase record in
the literature [6] [11], we compute the expected likelihood
[9] as the inner product of two Gaussian embeddings [8]
to parameterize the Gaussian distribution of complementary
relationships. Given an item pair (q, v), the expected likelihood
between their Gaussian embeddings is defined in Equation 1,
which is the probability density of a Gaussian distribution at
zero, N

(
0;µq − µv,Σq + Σv

)
.

E(q, r) =

∫
x∈Rd

N
(
x;µq,Σq

)
N (x;µv,Σv) dx

= N
(
0;µq − µv,Σq + Σv

)
(1)

Hence, N
(
x;µq − µv,Σq + Σv

)
denotes the Gaussian

distribution of the co-purchase data between (q, v), where the
mean is the difference between two items mean vectors in
complementary space and the covariance matrix combines the
variance of each individual items. The probability density at
zero, N

(
0;µq − µv,Σq + Σv

)
, represents the likelihood of

observing a co-purchase record of (q, v) when considering
both their complementary relationship (µq−µv) and variations
of purchase behaviors (Σq + Σv).

To illustrate the benefit of representing both co-purchase
data and items embeddings as Gaussian distributions, let’s
consider an example from our daily shopping: milk, cereal
and chips, in a 1-dimensional embedding space in Figure 1.
In Figure 1-(a), milk has the largest variance among three
items because it is usually a must-buy for many customers
and very likely to be co-purchased with other items with-
out complementary relationships. Cereal has the smallest
variance due to its stable co-purchase behavior with milk.
The variance of chips is intermediate because it has some
stable combinations such as chips dips while users might
also buy them individually as a snack before checkout, which
makes it variance relatively larger. In Figure 1-(b), we show
the Gaussian distribution of their complementary relationship
and highlight the their probability density at zero by the
point A for (milk, chips) and the point B for (milk,
cereal) when milk serves as the query item. Because the
difference of variances, the Gaussian distribution of the co-
purchase for (milk, cereal) shows less variance than that
for (milk, chips). Even though the observed co-purchase
records between milk and chips might be more than those
between milk and cereal, our model can still capture the
correct order of complementary relationships by comparing
|µmilk − µcereal| and |µmilk − µchips|. However, previous
methods using item embeddings might result differently due
to the directly fit for co-purchase frequency.

We follow the paradigm of Skip-gram with Negative Sam-
pling (SGNS) and generate the negative sample v′ which is



Fig. 1. (a) Examples of Gaussian embeddings (1-D) of
items milk, cereal and chips. (b) Visualization (1-D) of
N

(
0;µmilk − µchips,Σmilk +Σchips

)
(the point A) and

N (0;µmilk − µcereal,Σmilk +Σcereal) (the point B) when milk
serves as an query item. While likelihood of observing (milk, chips) could
be larger than that of observing (milk, cereal) in the noisy co-purchase
records (A > B), the correct complementary relationship between milk
and cereal is captured by the distance between µmilk and µcereal.

not co-purchased with q. Following the margin-based loss [8],
we construct a max-margin loss function with the margin γ in
Equation 2:

Litem(q, v, v′) = max(0, γ − logE(q, v) + logE(q, v′)) (2)

where

logE(q, v) =− 1

2
log det (Σq + Σv)− d

2
log(2π)

− 1

2
(µq − µv)T (Σq + Σv)

−1
(µq − µv)

C. Connection to Existing User-Item-level CIRS models

Existing works on CIRS such as [6] show that user informa-
tion will help improve the learning of item-to-item relationship
in a collaborative way by introducing the user embedding to
the Item2Vec [11] model. Our model can be extended easily
with user information. Specially, we adapt the advantage of
modeling the cohesion of each (item, item, user) triplet and
modify the BPR loss [19] to model user-item relationship by
minimizing the loss function 3 and 4, where σ(·) is the sigmoid
function and q′, v′ represent the negative samples that are not
purchased. These loss functions can be combined together with
Litem(q, v, v′) to form a new loss function Litem(q, v, v′|u) =
Litem(q, v, v′) + LBPR(u, q, q′) + LBPR(u, v, v′).

LBPR(u, q, q′) = 1− σ
(
θT
uµq − θT

uµq′

)
(3)

LBPR(u, v, v′) = 1− σ
(
θT
uµv − θT

uµv′

)
(4)

D. Optimization

Depending on whether we consider Litem(q, v, v′) or
Litem(q, v, v′|u) for a given co-purchase record (q, v), the

final objective function L can be written in Equation 5, where
S denotes the sampled records for training and Litem could be
Litem(q, v, v′) or Litem(q, v, v′|u). We optimize L by mini-
batch Stochastic Gradient Descent.

L =
∑

(q,v,v′,u)∈S

Litem (5)

E. Complementary Item Recommendation

To recommend complementary items, we extract the item
Gaussian embeddings and treat the mean vector of each item
as its representation under complementary relation. To mitigate
the impact of the vector magnitude when computing the
distance between mean vectors for ranking and comparison,
we follow Item2Vec [11] and Triple2Vec [6] and use the
cosine similarity between two items’ mean vectors to represent
the relevance of the complementary relationship.

IV. TRUSTWORTHY EVALUATION

Although we have addressed the label noise issue in the
modeling step by considering the co-purchase data as a Gaus-
sian distribution with item Gaussian embeddings, label noise
will impact the evaluation accuracy as well for result reporting
purpose. In this section, a trustworthy evaluation is developed
to exam the models with high quality labels generated from
an independence test-based method. Note that this evaluation
does not require extra information (item description, co-view
data, etc.) for creating the high quality labels.

Inspired from the definition of complementary items, we
treat the purchase of an individual item v as a random variable
from a Bernoulli distribution Yv ∼ Bernoulli(pv), and study
the independence between two items’ purchase to surface
the item pairs which are co-purchased dependently. Pearson’s
chi-squared test is suitable for this task, as it can assess
whether observations consisting of measures on two variables,
expressed in a contingency table, are independent of each other
[10]. Given two co-purchased items vi and vj , we define the
2-by-2 contingency table (Table I) for the observations of the
purchase event between vi and vj with the 1 degree of free-
dom. Let N denote the total number of observed co-purchase
records in the evaluation dataset. Fvi (Fvj ) represents the
frequency of co-purchases including the item vi (vj) and Oi

represents the observed frequency of different purchase events
defined in Table I. Typically, O1 represents the observed co-
purchases of (vi, vj). Following the definition of Fvi

and Fvj ,
we can compute that O2 = Fvj − O1, O3 = Fvi − O1 and
O4 = N −O1 −O2 −O3 = N −Fvi −Fvj +O1.

Without any knowledge of item complementary relation-
ships, we assume that each pair of co-purchased items, vi
and vj , are independent (the null hypothesis in our test H0).
The alternative hypothesis Ha is that they are purchased
dependently. We can compute the estimated frequency for
each purchase event Ei based on the independence assumption
by Table II. Following the Chi-squared test, we can compute
the value of the Chi-squared statistics X 2 =

∑4
i=1

(Oi−Ei)
2

Ei

which is used to determine the significance (p-value) by



TABLE I
2-BY-2 CONTINGENCY TABLE OF 4 DIFFERENT PURCHASE EVENTS

BETWEEN vi AND vj .

Yvi = 1 Yvi = 0 SUM

Yvj = 1
O1 = frequency of

observed co-purchase
(vi, vj )

O2 = frequency of
observed co-purchase

of vj with all items\vi
Fvj

Yvj = 0
O3 = frequency of

observed co-purchase
of vi with all items\vj

O4 = frequency of
observed co-purchase

w/o (vi, vj )
N - Fvj

SUM Fvi N - Fvi N

comparing to a Chi-squared distribution with one degree of
freedom. Item pairs which pass the Chi-squared test mean that
their co-purchase are dependent.

Further more, we need to determine if the dependency of
a co-purchased item pair is positive or negative. To achieve
this, we require that the observed co-purchase frequency of an
item pair should be larger than the expected frequency under
independence assumption, O1 > E1, if a co-purchased item
pair has a positive dependency. With a predefined p-value for
the statistic significance, we can create the high quality co-
purchase labels for evaluations. For clarity, we denote the
item pairs which pass the Chi-squared test and O1 > E1

as the positively-dependent item pairs and the item pairs
which pass the Chi-squared test and O1 <= E1 as the
negatively-dependent item pairs in the rest of our paper. We
summarize the algorithm of generating the trustworthy labels
for evaluation in Algorithm 1.

Algorithm 1 Trustworthy Label Generation for Evaluation
Require: a transaction set B, an empty hashtable Ψ, X 2

threshold tX 2 for a p-value;
Ensure:

1: for each transaction b in B do
2: sample co-purchase item pairs (vi, vj) from each trans-

action b ∈ B, vi 6= vj ;
3: compute the frequency of purchasing (vi, vj) together

and store the frequency in Ψ, i.e., Ψ[(vi, vj)] represents
the co-purchase frequency of (vi, vj);

4: end for
5: set N =

∑
(vi,vj)

Ψ[(vi, vj)];
6: set Fvi =

∑
(vk,vj),vk=vi

Ψ[(vk, vj)];
7: set Fvj =

∑
(vi,vk),vk=vj

Ψ[(vi, vk)];
8: for each (vi, vj) stored in Ψ do
9: compute the 2-by-2 contingency table by Ψ[(vi, vj)],

N,Fvi and Fvj based on Table I;
10: compute the table of expected value based on Table II;
11: compute X 2

(vi,vj)
=
∑4

i=1
(Oi−Ei)

2

Ei

12: if X 2
(vi,vj)

> tX 2 and O1 > E1 then
13: mark (vi, vj) as a qualified co-purchase label for

evaluation
14: end if
15: end for

TABLE II
EXPECTED VALUE OF 4 DIFFERENT PURCHASE EVENTS BETWEEN vi AND

vj .

Yvi = 1 Yvi = 0

Yvj = 1 E1 =
Fvi
·Fvj

N E2 =
(N−Fvi

)·Fvj

N

Yvj = 0 E3 =
Fvi
·(N−Fvj

)

N
E4 =

(N−Fvi
)·(N−Fvj

)

N

V. EXPERIMENTS
In this section, we study NEAT by comparing it with the

state-of-the-art baselines on the real-world datasets.

A. Dataset

For the publicly available dataset of raw transactions, we
consider Instacart dataset (INS) published by [20]. The date
of each order in this dateset is not provided but the sequence of
transactions by each user is available. Items in each transaction
are sorted by their purchase orders and the item-types are
also provided in Instacart by the aisles. Instacart dataset has
134 aisles from 21 departments and 3.3 million transactions,
which is small compared with the real-world applications with
more item-types and larger volume of transactions. We use
the default train (INS-T) and test (INS-E) split provided by
Instacart dataset. To further study the model performance, we
collect a proprietary dataset (WMT) with a larger scale from
Walmart e-Commerce platform (www.walmart.com) following
the same format of Instacart, where the sequence order of
transactions are kept and the order of purchases in the same
sequence is also preserved. For WMT dataset, we randomly
sample 15.2 million transactions from the past 6-month history
data and keep the latest 1.2 million transactions as our test
dataset (WMT-E). The rest of 14 million transactions are used
for training (WMT-T). Similar to INS dataset, we collect the
item categories based on the taxonomy of Walmart platform.
Co-purchase records are created from INS and WMT dataset
respectively to serve model training and label generation for
evaluation. Table III summarizes the statistics of the INS and
WMT datasets.

B. Label Generation for Training and Evaluation

We follow the steps in III-A to collect all the co-purchase
records for training from the training set. To improve the
quality of labels for model training, we remove labels selected
in the previous steps where two items are from the same aisles
(for INS dataset) or the same category (for WMT dataset) to
remove similar items. This is similar to the strategy used in
[7] when co-view data are not available because items from
the same aisle or category are similar and are likely to be
co-viewed for substitution.

For evaluation, we create the trustworthy labels following
Section IV under different p-value = {0.05, 0.01, 0.001}. We
conduct the experiments on these unique labels for evaluation.
As we mentioned previously, even these labels are with high
quality, it is not practical to be used for training purpose, due
to the limited coverage in item space. Table IV summarizes
the number of unique labels of the INS and WMT datasets.



TABLE III
DATA DESCRIPTION OF WMT AND INS DATASET

INS-T INS-E WMT-T WMT-E
# Transactions 3,214,874 131,209 ∼14 m ∼1.2 m
# Items 49,677 – ∼0.1 m –
# Categories/Aisles 134 – ∼850 –
# Users 206,209 131,209 ∼0.7 m ∼0.4 m

TABLE IV
NUMBER OF LABELS IN INS-E AND WMT-E

p-value = 0.05 p-value = 0.01 p-value = 0.001
INS-E 7,961 6,077 4,752
WMT-E 78,719 53,119 36,251

C. Experiment Setup

1) Baselines: To evaluate the effectiveness of applying
Gaussian distribution on co-purchase data and item embed-
dings, we compare NEAT with the following state-of-the-art
baselines:

• Collaborative Filtering (CF) [21]: an item recommen-
dation model which factorizes the user-item.

• Bayesian Personalized Ranking (BPRMF) [19]: an item
recommendation model which factorizes the user-item
implicit feedback from raw transactions by approximately
optimizing the AUC ranking metric.

• Item2Vec [11]: the first model that learns vector represen-
tations of items via SGNS and optimizes the similarity be-
tween item vectors for co-purchase data. It can be used to
model item complementarity by considering co-purchase
records of item pairs as input. As aforementioned, most of
the CIRS models can be viewed as Item2Vec plus auxil-
iary information such as graph, context and multi-modal
data source. In our work, we focus on modeling item
complementary relationship rather than the advantage
of incorporating such auxiliary information into models.
Hence, we choose this model as the baseline to represent
other item-to-item CIRS models for a fair comparison.

• Triple2Vec [6]: this state-of-the-art model learns vector
representations of item and user, and considers the triplet
interaction between a user and her/his co-purchased item
pair for complementarity. It can be viewed as an extension
of Item2Vec with user embeddings.

Besides, we also consider two popularity-based baselines:
Popular Item (Pop) and Popular Co-purchase (PopCo).
In Pop, the complementary item recommendations for the
query item are the most popular items globally. In PopCo,
we take the query item’s popular co-purchased items as the
complementary item recommendations.

2) NEAT Variants: Depending on whether incorporating
the user-item level collaborative learning into the model, we
develop two variants of our model:

• NEAT : This model is trained by optimizing L with
Litem = Litem(q, v, v′) to model the item-level com-
plementary co-purchase signals.

• NEAT+bpr: In addition to the item-level complementary
signals, this model is trained by optimizing L with
Litem = Litem(q, v, v′|u) (see section III-C) to further
model the user-item level collaborative learning for com-
plementary signals.

3) Implementation Details: For simplicity, we set the
covariance matrix in the NEAT model to be spherical. The
margin γ in Equation 2 is set to be 0.5 for the computation of
Hit-Rate (HR) and Normalized Discounted Cumulative Gain
(NDCG). We applied the following settings for all models
in the experiments, unless it is specified: the dimension of
the item embeddings are set to be 100, the window size for
sampling co-purchased items is set to be 5, and all models
are trained for 5 epochs. For Item2Vec, Triple2Vec and our
model, the batch size is 128, with the initial learning rate of
0.05 and the mini-batch Stochastic Gradient Descent (SGD)
optimizer. We follow the skip-gram training paradigm and set
the number of negative sample to 5 during training.

D. Study on Labels for Evaluation

1) Label Quality: In this section, we present the study
of the trustworthy label generation method and show its
effectiveness. There are three major concerns of data labeling:
coverage, consistency and accuracy.
Coverage: a good data labeling method should have enough
coverage on the representative patterns of the dataset. In our
case, the label generation should show a good coverage of
different item categories and departments instead of being
biased to few item categories. To illustrate the coverage of
our label generation method, we focus on the department level
without the loss of generality and readability and compute the
distribution of labels over different departments for the INS-E
dataset in Table V. Compared with the distribution of total
co-purchase records from the INS-E dataset, our labels show
similar distributions over all departments. We notice that the
Pets department is not covered by our labels. This is because
most of the raw co-purchase records with pet-related items
also consist of non-pet-related items like grocery in the INS-
E dataset, which are not complementary. The label distribution
over departments indicates that our method is not biased to a
certain department and covers complementary signals of item
purchase behaviors under various departments.
Consistency: by the design of our label generation method,
the percentage of complementary labels should increase as the
p-value decreases. To show such a consistency, we plot the
distribution of X 2 statistics for each item pair which passes the
test for a given p-value for both positively dependent item pairs
(O1 > E1) and negatively dependent item pairs (O1 <= E1)
in Figure 2. We see that while most of the labels (both negative
and positive) are with X 2 statistics between 0 and 99, the
percentage of positively dependent item pairs with higher X 2

statistics has a larger lift as the p-value decreases compared
with the negatively dependent item pairs. Because we use the
positively dependent item pairs as the labels for evaluation,
this consistency between the increase of more complementary
labels and the decrease of p-value indicates that raising the



TABLE V
DISTRIBUTION OF LABELS OVER DEPARTMENTS OF INS-E DATASET

Department Total p = 0.05 p = 0.01 p = 0.001
alcohol 0.370% 0.339% 0.411% 0.505%
babies 1.451% 0.364% 0.378% 0.337%
bakery 4.462% 4.459% 4.048% 3.788%
beverages 9.437% 8.504% 8.672% 9.007%
breakfast 2.796% 1.306% 1.349% 1.410%
bulk 0.100% 0.100% 0.115% 0.126%
canned goods 4.001% 2.927% 2.781% 2.399%
dairy eggs 17.101% 23.678% 22.100% 20.623%
deli 3.594% 2.487% 2.403% 2.273%
dry goods pasta 3.559% 1.859% 1.678% 1.599%
frozen 8.715% 3.944% 3.966% 4.167%
household 3.016% 0.867% 0.889% 0.989%
international 1.138% 0.603% 0.675% 0.526%
meat seafood 2.474% 2.613% 2.271% 2.041%
missing 0.759% 1.017% 1.152% 1.305%
other 0.168% 0.038% 0.049% 0.042%
pantry 6.720% 2.927% 2.946% 2.736%
personal care 1.772% 0.113% 0.115% 0.147%
pets 0.484% 0.000% 0.000% 0.000%
produce 17.369% 30.511% 31.019% 31.587%
snacks 10.512% 11.343% 12.983% 14.394%
SUM 6249077 7961 6077 4752

significance level by p-value can further concentrate the co-
purchase labels with positively dependence (complementary
relationships).
Accuracy: we provide a case study of the positively dependent
item pairs (our labels) and the negatively dependent item pairs
to show that our model can provide more accurate labels for
evaluation in Table VI and VII. Note that the chi-squared
statistics X 2 should be not smaller than 10.83 for p-value =
0.001. Both positive and negative item pairs show large enough
chi-squared statistics. While the positive labels are showing
clear complementary relationships, e.g., syrup for waffle, hot
dog buns for hot dog, and kitchen bag for laundry-related items
for household, the negative labels reflect the noise in the co-
purchase records even though they pass the Chi-squared test.
Most of the co-purchased items in the negative labels are fruits
like Banana, which are the popular items in the INS dataset.
See examples of top-20 popular items in the INS dataset in
Table VIII. The comparison between the positive labels and
the negative labels indicates that our label generation method
can surface more complementary labels while suppressing the
noise in the co-purchase records.

E. Evaluation on Item-level Co-purchase Data

Evaluation metrics: We mainly focus on HitRate (HR@K)
and NDCG@K of evaluation. Given the query item q, we con-
sider the top-K recommendations Rq has a hit on the test co-

purchase record (q, v) if v ∈ Rq: HR@K =

{
1, if v ∈ Rq

0, otherwise
.

For NDCG@K, we consider the binary relevance score and

define it as NDCG@K =

{
1

log2(1+rankv)
, if v ∈ Rq

0, otherwise
.

To evaluate the ability to surface complementary recommen-
dations from the noisy co-purchase data, we firstly generate
the recall set by taking the top-K most co-purchased items for

TABLE VI
POSITIVELY-DEPENDENT ITEM PAIR, INS DATASET WITH P-VALUE =

0.001

Query Item Co-purchased Item X 2

Beef Hot Dogs Classic Hot Dog Buns 5084.536
Everything Bagels Whipped Cream Cheese 85.501

Thin & Light Tortilla Chips Medium Salsa Roja 239.958
Eggo Homestyle Waffles Original Syrup 170.825

Cherrios Honey Nut (cereal) Reduced Fat 2% Milk 62.804
Green Curry Paste Organic Coconut Milk 51.005

Plain Mini Bagels Philadelphia Cream
Cheese Spread 33.513

Stand ’n Stuff Taco Shells Original Taco Seasoning Mix 20.774
Snack Bags (food storage) Sandwich Bags (food storage) 106.078

Fabric Softener Dryer Sheet Tall Kitchen Bag
With Febreze Odor Shield 1414.015

TABLE VII
NEGATIVELY-DEPENDENT ITEM PAIR, INS DATASET WITH P-VALUE =

0.001

Query Item Co-purchased Item X 2

Organic Sea Salt
Roasted Seaweed Snacks Banana 108.817

Free & Clear Unscented Baby Wipes Large Lemon 61.033
Naturals Savory Turkey

Breakfast Sausage Strawberries 18.558

Gluten Free Whole Grain Bread Large Lemon 52.104
Eggo Homestyle Waffles Organic Cucumber 42.681

Naturals Chicken Nuggets Organic Avocado 60.222
Cheerios Honey Nut (cereal) Jalapeno Peppers 33.853

Everything Bagels Organic Strawberries 35.512
Taco Seasoning Organic Raspberries 53.735

Laundry Detergent Free & Clear Banana 16.293

TABLE VIII
TOP-20 GLOBALLY POPULAR ITEMS, INS DATASET

Rank Item
1 Banana
2 Bag of Organic Bananas
3 Organic Strawberries
4 Organic Baby Spinach
5 Organic Hass Avocado
6 Organic Avocado
7 Large Lemon
8 Strawberries
9 Limes
10 Organic Whole Milk
11 Organic Raspberries
12 Organic Yellow Onion
13 Organic Garlic
14 Organic Zucchini
15 Organic Blueberries
16 Cucumber Kirby
17 Organic Fuji Apple
18 Organic Lemon
19 Apple Honeycrisp Organic
20 Organic Grape Tomatoes



Fig. 2. Distribution of X 2 of both positively dependent labels (in green) and negatively dependent labels (in red) with p-value = {0.05, 0.01, 0.001}.

the query item in the training data, rather than a sampled item
set in which each ground truth item in the test set is paired with
a few (e.g., 100) randomly sampled negative items [22] [23]
[24] [25]. We report the average score over the co-purchase
records for HR@K and NDCG@K, K = {1, 3, 5, 10, 20}.
Results: We summarize the results of HR@K and NDCG@K
for INS dataset (in Tables IX-XI ) and WMT dataset (in
Tables XII-XIV). The best performance for each metric is
highlighted in bold. Pop shows zero HR@K and NDCG@K
when K is small. As aforementioned, popular items are
involved in many co-purchase records which are not motivated
by complementary relationships. After removing irrelevant co-
purchase records from the dataset by the trustworthy label
generation, Pop is less likely to hit a complementary co-
purchase. Popco still achieves reasonable performance on all
metrics because it captures the noisy item-to-item complemen-
tary relationship via ranking the co-purchased items by their
co-purchase frequency with the query item. Item2Vec and
Triple2Vec outperform the frequency-based baselines due to
the advantage of item vector representation. Our model further
improves the performance on both HR and NDCG compared
with frequency-based baselines and the vector-based baselines.
The results indicate the advantage of modeling the label noise
in the co-purchase distribution.

F. Ablation Study of NEAT
Our model can be extended with user embeddings to model

the complementary relationship from the user-item-level co-
purchase data. To study the extensibility of our model and
the influence of involving user embeddings, we compute
HR@K and NDCG@K for NEAT and NEAT+bpr, K =
{1, 3, 5, 10, 20}. The results are summarized in Tables IX-XIV.
We can see that both NEAT and NEAT+bpr perform similarly
but NEAT+bpr outperforms NEAT in most cases when: (1)
K becomes larger or (2) number of items increases from INS
dataset to WMT dataset. This indicates that including user-
item-level signals improves the model performance especially
when the number of items is large.

G. Sensitivity Analysis of the Margin γ

We conduct experiments on NEAT with different margins
γ = {0.1, 0.2, 0.5, 1.0, 2.0} on the three label sets of INS

Fig. 3. Analysis of the margin γ on three label sets, p-value =
{0.05, 0.01, 0.001}, for metric@{5, 10, 20} of Hit-Rate and NDCG on INS
dataset.

Fig. 4. Analysis of the margin γ on three label sets, p-value =
{0.05, 0.01, 0.001}, for metric@{5, 10, 20} of Hit-Rate and NDCG on
WMT dataset.

dataset and WMT dataset respectively. We report HR@K
and NDCG@K for evaluation with K = {5, 10, 20} and
summarize the results in Figure 3 and 4. The results indicate
that the model is in favor of a larger margin.

H. Case Study: Item Representation as a Distribution

To test whether the Gaussian embedding of items could
capture the variation of items in their co-purchase, we fo-



TABLE IX
INS LABELS, P-VALUE = 0.05

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0014 0.0005 0.0035 0.0010
PopCo 0.0122 0.0122 0.0437 0.0303 0.0734 0.0425 0.1334 0.0617 0.2168 0.0826
CF 0.0087 0.0087 0.0245 0.0176 0.0396 0.0238 0.0765 0.0355 0.1516 0.0543
BPRMF 0.0067 0.0067 0.0225 0.0155 0.0368 0.0214 0.0720 0.0326 0.1467 0.0512
Item2Vec 0.0196 0.0196 0.0484 0.0360 0.0746 0.0468 0.1271 0.0636 0.2231 0.0876
Triple2Vec 0.0221 0.0221 0.0541 0.0403 0.0813 0.0514 0.1325 0.0678 0.2110 0.0874
NEAT 0.0252 0.0252 0.0633 0.0468 0.0970 0.0606 0.1574 0.0798 0.2593 0.1054
NEAT+bpr 0.0249 0.0249 0.0628 0.0464 0.0927 0.0586 0.1628 0.0811 0.2591 0.1053

TABLE X
INS LABELS, P-VALUE = 0.01

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0005 0.0023 0.0007
PopCo 0.0155 0.0155 0.0541 0.0378 0.0900 0.0526 0.1593 0.0747 0.2587 0.0996
CF 0.0100 0.0100 0.0276 0.0200 0.0443 0.0268 0.0849 0.0397 0.1711 0.0612
BPRMF 0.0076 0.0076 0.0262 0.0180 0.0415 0.0243 0.0819 0.0372 0.1654 0.0580
Item2Vec 0.0230 0.0230 0.0559 0.0418 0.0859 0.0541 0.1450 0.0729 0.2549 0.1004
Triple2Vec 0.0253 0.0253 0.0635 0.0472 0.0931 0.0593 0.1502 0.0775 0.2391 0.0998
NEAT 0.0293 0.0293 0.0734 0.0543 0.1121 0.0701 0.1833 0.0928 0.2998 0.1221
NEAT+bpr 0.0286 0.0286 0.0732 0.0540 0.1084 0.0684 0.1899 0.0945 0.3011 0.1224

TABLE XI
INS LABELS, P-VALUE = 0.001

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0013 0.0004 0.0023 0.0007
PopCo 0.0189 0.0189 0.0640 0.0450 0.1048 0.0618 0.1833 0.0869 0.2963 0.1152
CF 0.0112 0.0112 0.0316 0.0227 0.0499 0.0302 0.0943 0.0443 0.1896 0.0681
BPRMF 0.0082 0.0082 0.0286 0.0197 0.0452 0.0266 0.0922 0.0415 0.1841 0.0645
Item2Vec 0.0265 0.0265 0.0623 0.0468 0.0962 0.0607 0.1616 0.0816 0.2870 0.1129
Triple2Vec 0.0276 0.0276 0.0711 0.0525 0.1040 0.0659 0.1681 0.0864 0.2668 0.1111
NEAT 0.0335 0.0335 0.0835 0.0619 0.1273 0.0798 0.2075 0.1054 0.3403 0.1388
NEAT+bpr 0.0341 0.0341 0.0823 0.0613 0.1227 0.0778 0.2163 0.1078 0.3424 0.1395

TABLE XII
WMT LABELS, P-VALUE = 0.05

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0014 0.0004
PopCo 0.0069 0.0069 0.0207 0.0148 0.0310 0.0190 0.0506 0.0253 0.0803 0.0328
CF 0.0033 0.0033 0.0076 0.0058 0.0105 0.0070 0.0193 0.0098 0.0451 0.0162
BPRMF 0.0042 0.0042 0.0108 0.0080 0.0164 0.0103 0.0276 0.0139 0.0505 0.0196
Item2Vec 0.0082 0.0082 0.0200 0.0149 0.0298 0.0189 0.0504 0.0256 0.0818 0.0335
Triple2Vec 0.0087 0.0087 0.0210 0.0158 0.0294 0.0192 0.0438 0.0239 0.0615 0.0283
NEAT 0.0120 0.0120 0.0292 0.0219 0.0437 0.0278 0.0715 0.0367 0.1065 0.0455
NEAT+bpr 0.0121 0.0121 0.0298 0.0221 0.0437 0.0278 0.0717 0.0368 0.1074 0.0459

TABLE XIII
WMT LABELS, P-VALUE = 0.01

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0013 0.0003
PopCo 0.0099 0.0099 0.0291 0.0208 0.0432 0.0266 0.0695 0.0351 0.1080 0.0448
CF 0.0042 0.0042 0.0098 0.0074 0.0134 0.0089 0.0244 0.0124 0.0574 0.0206
BPRMF 0.0055 0.0055 0.0141 0.0104 0.0212 0.0133 0.0359 0.0180 0.0648 0.0252
Item2Vec 0.0110 0.0110 0.0261 0.0196 0.0388 0.0248 0.0649 0.0332 0.1059 0.0435
Triple2Vec 0.0117 0.0117 0.0273 0.0207 0.0379 0.0250 0.0563 0.0310 0.0786 0.0366
NEAT 0.0165 0.0165 0.0393 0.0295 0.0583 0.0373 0.0945 0.0490 0.1393 0.0603
NEAT+bpr 0.0165 0.0165 0.0401 0.0299 0.0582 0.0373 0.0944 0.0490 0.1402 0.0606

cus on three items, Whole Milk, Cereal and Organic
Tortilla Chips in INS dataset, and study the relationship
between item Gaussian embeddings and complementary rela-

tionships when Whole Milk becomes the query item. On
one hand, the cosine similarity of µWhole Milk and µCereal is
larger then that of µWhole Milk and µOrganic Tortilla Chips,



TABLE XIV
WMT LABELS, P-VALUE = 0.001

HR@1 NDCG@1 HR@3 NDCG@3 HR@5 NDCG@5 HR@10 NDCG@10 HR@20 NDCG@20
Pop 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0012 0.0003
PopCo 0.0140 0.0140 0.0407 0.0293 0.0599 0.0371 0.0948 0.0484 0.1437 0.0607
CF 0.0055 0.0055 0.0129 0.0097 0.0173 0.0115 0.0313 0.0160 0.0730 0.0263
BPRMF 0.0069 0.0069 0.0177 0.0130 0.0271 0.0168 0.0461 0.0229 0.0831 0.0322
Item2Vec 0.0145 0.0145 0.0342 0.0257 0.0504 0.0324 0.0837 0.0431 0.1365 0.0563
Triple2Vec 0.0156 0.0156 0.0356 0.0271 0.0491 0.0327 0.0725 0.0402 0.1010 0.0474
NEAT 0.0226 0.0226 0.0524 0.0396 0.0771 0.0498 0.1237 0.0648 0.1806 0.0792
NEAT+bpr 0.0223 0.0223 0.0532 0.0399 0.0771 0.0497 0.1241 0.0649 0.1815 0.0794

which aligns with the expectation of stronger complementary
relationship between Whole Milk and Cereal. On the
other hand, the query item Whole Milk which has higher
popularity than Cereal and Organic Tortilla Chips
in INS dataset also shows higher variation (indicated by the
determinant of the spherical covariance matrix). In particular,
the det(ΣWhole Milk) is 30 times larger than det(ΣCereal)
and is 547 times larger than det(ΣOrganic Tortilla Chips).
This also aligns with our expectation of their variation
since Whole milk (35633 purchases) is more popular
than Cereal (12184 purchases) and Organic Tortilla
Chips (13776 purchases) in INS dataset and hence more
likely to form irrelevant co-purchases.

VI. CONCLUSIONS

In this paper, we proposed a label noise-resistant comple-
mentary item recommendation model named NEAT to address
the label noise issue for complementary item recommendation
when the co-purchase data are used as labels. NEAT learns the
item representations as Gaussian embeddings, and assumes the
co-purchase data as a Gaussian distribution, where the mean
is the co-purchases from the true complementary relation, and
the variance is the co-purchases from the noise. In addition,
we developed a trustworthy label generation method for model
evaluation to alleviate the impact of noisy labels in evaluation
step. We performed extensive experiments on two real-world
datasets and the results show the effectiveness of the proposed
method over state-of-the-art models.
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