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Spatio-temporal Multi-task Learning via Tensor
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Abstract—Predictive modeling of large-scale spatio-temporal data is an important but challenging problem as it requires training
models that can simultaneously predict the target variables of interest at multiple locations while preserving the spatial and temporal
dependencies of the data. In this paper, we investigate the effectiveness of applying a multi-task learning approach based on
supervised tensor decomposition to the spatio-temporal prediction problem. Our proposed framework, known as SMART, encodes the
data as a third-order tensor and extracts a set of interpretable, spatial and temporal latent factors from the data. An ensemble of spatial
and temporal prediction models are trained using the latent factors as their predictor variables. Outputs from the ensemble model are
aggregated to make predictions on test instances. The framework also allows known patterns from the domain to be incorporated as
constraints to guide the tensor decomposition and ensemble learning processes. As the data may grow over space and time, an
incremental learning version of the framework is given to efficiently update the models. We perform extensive experiments using a
global-scale climate dataset to evaluate the accuracy and efficiency of the models as well as interpretability of the latent factors.

Index Terms—multi-task learning; tensor decomposition; spatio-temporal data mining; incremental learning
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1 INTRODUCTION

S PATIAL-temporal data, consisting of measurements for
one or more raster fields, such as weather, traffic volume,

crime rate, or disease incidents, have become increasingly
prevalent in the current age of big data. The abundance of
such data provides opportunities to develop sophisticated
predictive modeling techniques for various scientific do-
mains, including climatology [1], [21], [27], medicine [13],
and crop sciences [5]. In addition to generating robust
predictions at multiple locations, the models should also
provide useful insights into the underlying factors govern-
ing the spatio-temporal variabilities observed in the data.

Conventional approaches for spatio-temporal prediction
can be divided into two categories. In the first category,
a temporal model is trained for each location with the
spatial information acting as constraints on the relation-
ship between models at different locations [28], [34], [39].
The spatial information are typically provided based on
some simplified assumption about the relationships be-
tween models at different locations. For example, a typical
assumption based on Tobler’s first law of geography [31]
is that the models for nearby locations should have similar
parameter values. This assumption can be realized using
a graph Laplacian regularizer such as the ones adopted in
[34], [41]. Although such an assumption helps to ensure
spatial smoothness of the models, it is insufficient to capture
the detailed spatial patterns of the data. In contrast, the sec-
ond category of approaches would develop a model for all
locations, using spatial modeling methods such as Gaussian
Markov Random Field [24] and kriging [12]. Although these
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approaches can reproduce the spatial patterns effectively,
they may not be able to capture the detailed temporal
patterns at each location.

To the best of our knowledge, none of these existing
approaches combine both spatial and temporal models to
generate more accurate predictions with consistent patterns
across both space and time dimensions. Furthermore, they
are not designed to incorporate known spatio-temporal pat-
terns from the application domain. For example, it is known
that the climate variability at a location can be influenced by
broad-scale teleconnection patterns [21], [27] such as the El
Niño phenomenon. How to seamlessly integrate such pat-
terns into the predictive modeling framework while simul-
taneously identifying new, previously unknown patterns is
a challenge that has not been sufficiently addressed in the
literature.

To address these challenges, this paper presents a multi-
task learning framework for predictive modeling of spatio-
temporal data using a supervised tensor decomposition
approach. The framework, called SMART (Spatio-temporal
Multi-task Learning via Tensor Decomposition), represents
the data as a third-order tensor, where the dimensions of the
tensor correspond to the spatial, temporal, and multivari-
ate features of the data. A CANDECOMP/PARAFAC (CP)
decomposition [19] is performed on the tensor to extract
a set of rank-1 latent factors from the data. As shown in
Fig. 1, the multivariate spatio-temporal data can be decom-
posed into multiple rank-1 tensors, where each of the rank-
1 tensor is calculated by the outer product of three rank-
1 latent factors. Each latent factor can be described by its
spatial, temporal, and feature dimensions, thus providing
an interpretable way to characterize the underlying factors
governing the variability of the data. The latent factors
also serve as predictor variables for training an ensemble
of spatial and temporal multi-task learning (MTL) models.
SMART enables the tensor decomposition and ensemble
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Fig. 1: CP decomposition on a multivariate spatio-temporal
data tensor representation. Each latent factor can be de-
scribed by its spatial, temporal, and feature dimensions.

learning steps to be performed simultaneously by optimiz-
ing a joint objective function. The ensemble model can be
applied to the test data by aggregating the outputs from
the spatial and temporal models to generate their final
prediction. Furthermore, known patterns from the domain
can be easily incorporated as constraints on the spatial or
temporal latent factors derived by the proposed framework.
Sparsity-inducing norms are also introduced as additional
constraints to avoid overfitting and enhance the model
interpretability.

Despite its advantages, one practical limitation of the
proposed framework is its high storage and runtime com-
plexity when applied to big data applications. As many
spatio-temporal datasets may continue to grow over space
and time, building the models repeatedly from scratch
whenever new observation data becomes available is not
a feasible solution. In our previous work [36], an incre-
mental learning algorithm named WISDOM was introduced
to provide an efficient implementation of the proposed
SMART framework. WISDOM allows the latent factors and
ensemble model parameters to be incrementally updated
when data for a new location or a new time period is
introduced. Using a global-scale climate data as our case
study, we showed that the proposed framework can help
identify the spatial and temporal latent factors that drive
the variability observed in the climate data. In this journal
version, we compare the performance of WISDOM against
a batch implementation of SMART and demonstrate their
trade-off in terms of model accuracy and training runtime,
especially when applied to large-scale datasets. We also
provide detailed time complexity and scalability analysis for
both WISDOM and its corresponding batch algorithm.

The remainder of the paper is organized as follows.
Section 2 briefly summarizes previous work related to this
paper. The spatio-temporal predictive modeling problem is
described in Section 3. The proposed SMART framework
along with its batch and incremental learning implementa-
tions are introduced in Section 4 and 5. Section 6 describes
the results of our experimental evaluation while Section 7
presents the conclusions of this study.

2 RELATED WORK

Spatio-temporal datasets are prevalent across numerous
application domains, from geophysical and environmental
sciences to urban computing and healthcare. The spatio-
temporal data can be generally classified into two types [25],
either as spatial trajectories of moving objects or as time
series observations at fixed geo-referenced locations. The
former corresponds to the recorded paths of various mobile

entities [42], such as the routes taken by vehicles [37]. The
latter, also known as spatial time series data [25], consists of
temporal measurements for one or more raster fields, such
as climate, pollution level, or disease incidents, at a fixed set
of geo-referenced locations [18]. The techniques presented in
this paper focused only on the latter type of spatio-temporal
data. Furthermore, we use climate modeling as the testbed
application for evaluating the various techniques.

There has been extensive research which applies data
mining and machine learning techniques to climate data
analysis problem [4]. Novel techniques such as distribution
preserving regression [20] have been developed to meet
the specific needs of the domain. Since the climate mod-
eling task requires making predictions at multiple locations
within a region of interest, this makes it a natural choice
for applying multi-task learning (MTL) [8]. MTL assumes
that the generalization performance for multiple predic-
tion tasks can be enhanced by learning the related tasks
jointly [43]. It is essential in MTL methods to define the
task relationships. Existing MTL methods either define the
task relatedness explicitly using low-rank assumption [10],
graph Laplacian [44], parameter sharing [15], [38], combi-
nation of the above methods [35], or learn the relatedness
using structure learning techniques [16]. Unlike the previous
works, in which the task relatedness are mainly defined by
various assumptions between task models, such as low-rank
assumption, the approach developed in this paper learns
the task relatedness from the spatio-temporal data itself by
performing a tensor decomposition [3], [19] on the data.

Existing tensor decomposition approaches can be classi-
fied as unsupervised [9], [11] or supervised methods [23],
[32], [33], [39]. Unsupervised methods are designed to min-
imize reconstruction error as the tensor is decomposed into
a product of its latent factors. For example, Ardavan et.
al [2] proposed an Orthogonal Tensor Factorization Frame-
work for spatio-temporal data analysis to enhance the inter-
pretability of the model. Supervised methods consider the
relationship between the predictor and response variables,
and thus, are more appropriate for predictive modeling
problems. Wu et. al [33] proposed a framework that couples
non-negative tensor factorization with a maximum margin
classifier for classification problems. Romera-Paredes et.
al [23] and Milawarne et. al [32] presented a multilinear
MTL framework using a supervised tensor decomposition
approach. Similarly, Yu et. al [39] proposed a low-rank
tensor learning approach for multivariate spatio-temporal
data. These approaches encode the model parameters as a
tensor, which is assumed to have a low rank representa-
tion. Thus, the tensor decomposition was performed on the
model parameters instead of the spatio-temporal data. In
addition, Yu et. al [40] provided a theoretical analysis on the
tensor decomposition based regression by comparing with
Gaussian Processes. In contrast, our SMART framework
applies tensor decomposition to the spatio-temporal data
itself, allowing us to derive meaningful interpretation of the
latent factors in terms of their spatial, temporal, and feature
dimensions. Furthermore, none of these existing methods
consider building an ensemble model on the latent factors
obtained from the different dimensions of the tensor, unlike
the method proposed in this paper.

Finally, online tensor decomposition methods have also
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been developed in recent years [29], [30]. These methods
are mostly unsupervised, based on incremental versions of
Tucker decomposition [30] [17] or CP decomposition [45]
[26] [14]. Although there has been recent work on online
supervised tensor decomposition for streaming data [39], it
considers the new observations along the time dimension
only, unlike our framework, which assumes the new ob-
servations may arrive along the space or time dimensions.
Furthermore, since the tensor decomposition was applied to
the model parameters, instead of the spatio-temporal data
itself, this makes it harder to interpret the latent factors.
Bulat et. al proposed an incremental multi-domain learning
with tensor factorization [7], which performs an incremental
tensor decomposition on new domains. However, it does
not consider the temporal relatedness within tasks and does
not automatically apply on spatio-temporal data.

3 PROBLEM STATEMENT

Let S = {1, 2, · · · , S} denote the set of indices associated
with the geo-locations of a given spatio-temporal dataset
and T = {1, 2, · · · , T} denote the set of indices associated
with the timestamps of the data. For brevity, we represent
matrices as boldface capital letters, such as A or B, and
tensors by boldface calligraphic fonts, such as X or Y .
Scalars are denoted by lowercase letters such as c whereas
vectors are denoted by boldface lowercase letters such as x.
Furthermore, we use the “:” symbol to denote sub-arrays
within a matrix or a tensor. For example, A:k refers to the
k-th column of matrix A. To simplify the notation, A:k is
also written as Ak when the context is clear.

The fiber of a tensor is a vector obtained by fixing all
indices of the tensor except for one of them. For example,
given a 3-dimensional tensor X , X i:j refers to its mode-2
fiber, obtained by fixing the mode-1 index to i and mode-
3 index to j. In the meantime, the slice of a tensor refers
to a matrix obtained by fixing all but two of the indices
of the tensor. For example, X ::i is the i-th mode-3 slice
of the tensor X obtained by setting its mode-3 index to i.
A tensor X ∈ <p1×···×pN can be unfolded into a matrix
X(n) ∈ <pn×qn , where qn = Πk 6=npk, by arranging each
mode-n fiber of the tensor as a column of X(n). This process
is also known as mode-n unfolding or mode-nmatricization
of the tensor. The Khatri-Rao product of two matrices is
equivalent to applying a Kronecker product columnwise
to the matrices. For example, the Khatri-Rao product for
matrices A ∈ <N×K and B ∈ <M×K is given by:

A�B = [a1 ⊗ b1,a2 ⊗ b2, · · · ,aK ⊗ bK ] ,

where ⊗ denote the Kronecker product.
The spatio-temporal prediction problem can be formal-

ized as follows. We consider a spatio-temporal dataset,
D = (X ,Y), where X ∈ <S∗×T∗×d represents the spatio-
temporal tensor of predictor variables, with d the number
of predictor variables, and Y ∈ <S×T represents a matrix
containing the time series of response variable values for
all locations. Note that S∗ and S respectively denote the
number of locations for which the values of predictor and
response variables are available. Similarly, T ∗ denotes the
length of time series of the predictors, while T is the length
of time series of the responses. In the setting of this paper,

we assume S∗ and T ∗ are greater than or equal to S
and T , respectively. Our goal is to learn a spatio-temporal
target function, fst(xst), that maps each input xst ∈ <d
to its corresponding response value yst ∈ < in a way that
minimizes some loss function, `(fst[xst, yst]).

A standard approach to address the spatio-temporal
prediction problem at multiple locations is to train a dis-
tinct temporal model for each location, ft(xst; ws), where
ws ∈ <d×1 is the model parameter for location s. The
temporal models can be trained independently or jointly
using a multi-task learning approach such as [34] to predict
future values of the response variable at all locations, where
each task corresponds to the modeling task at each location.
Here, the spatial information can be used as constraints [28],
[34] on the parameters of the temporal models to ensure
their spatial smoothness. Alternatively, one could also treat
the modeling problem at each time as one task in multi-task
learning framework, and train a spatial prediction model
at each time t, fs(xst; vt), where vt ∈ <d×1 is the model
parameter at time t and apply the model to predict the
values of the response variable at a previously unobserved
location s. Ensuring the temporal consistency of the predic-
tions is a challenge that must be addressed by the spatial
models. To overcome the challenge of preserving the spatial
and temporal consistencies of the model predictions, this
paper presents an ensemble multi-task learning approach
that combines the predictions from the spatial and temporal
multi-task models in a unified learning framework, where
the multiple tasks are not only across over space, but also
across time. Details of the proposed framework are given in
the next section.

4 PROPOSED ENSEMBLE SPATIO-TEMPORAL
MULTI-TASK LEARNING FRAMEWORK

Fig. 2 presents a high-level overview of the training and
prediction steps of the proposed SMART framework. The
framework is novel in that it simultaneously learns an
ensemble of spatial and temporal multi-task models using
the latent factors derived from the spatio-temporal data.
The ensemble outputs are then combined to obtain the final
prediction. More specifically, the framework predicts the
response value for a location s at time t as a weighted linear
combination of its spatial and temporal models, i.e.,

ŷst = f(xst) = xTst

[ K∑
k

Askwk +

K∑
k

Btkvk

]
= xTst(W

TAs + VTBt)

= fs(x
T
st) + ft(x

T
st), (1)

where W = [wT
1 ; wT

2 ; ...; wT
K ] ∈ <K×d, V =

[vT1 ; vT2 ; ...; vTK ] ∈ <K×d, As is the transpose of s-th row
of A ∈ <S×K , and Bt is the transpose of t-th row of
B ∈ <T×K . Note that fs(xTst) = xTstW

TAs corresponds
to an ensemble of spatial models, where As denotes the
model parameters, expressed in terms of a linear combina-
tion of the K spatial latent factors W. Similarly, ft(xTst) =
xTstV

TBt corresponds to an ensemble of temporal models
parameterized by the weight matrix Bt, which represents
a linear combination of the temporal latent factors V. The
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Fig. 2: Overview of the proposed SMART framework.

parameters are estimated by optimizing the following joint
objective function:

min
W,V

S∑
s

T∑
t

`[ŷst, yst] + Ωm(W,V) (2)

where `[·] is the loss function and Ω(W,V) is a regular-
ization term for the model parameters. In this paper, we
consider a squared loss function, `[ŷst, yst] = (ŷst − yst)2,
and define Ωm(W,V) = ‖W‖1 + ‖V‖1 to ensure sparsity
of the models.

4.1 Supervised Tensor Decomposition

The formulation presented in Eq.(1) requires knowledge
about the latent factors of the spatio-temporal tensor. These
latent factors are represented by the factor matrices A and
B, which can be derived using tensor decomposition tech-
niques. There are two standard ways to decompose a tensor,
namely, Tucker and CANDECOMP/PARAFAC (CP) decom-
positions [19]. Tucker decomposition factorizes a tensor into
a core tensor and a product of its factor matrices for each
mode. Though it provides a more general representation,
it is harder to interpret the latent factors as the number of
latent factors for each mode can be different. In contrast,
CP decomposition factorizes a tensor into a sum of rank-1
tensors, i.e., X = JA,B,CK =

∑K
k=1 Ak ◦ Bk ◦Ck, where

◦ denote the outer product operation between two vectors
while Ak, Bk and Ck correspond to the vectors associated
with the k-th latent factor. The vectors Ak, Bk and Ck

also denote the k-th columns of the matrices A, B, and C,
respectively.

In this work, we apply CP decomposition to the spatio-
temporal tensor X ∈ <S∗×T∗×d, where the (s, t)-th element
of its mode-3 fiber corresponds to the values of the predictor
values for location s at time t, i.e., X st: = xst. The latent
factors are obtained by optimizing the following objective
function:

min
A,B,C

1

2
‖X − JA,B,CK‖2F + Ωd(A,B,C)

where ‖X‖F =
√∑

ijk X 2
ijk is the Frobenius norm of the

tensor X and Ωd(A,B,C) is a regularization term for the

factor matrices A, B, and C. To ensure interpretability of the
latent factors, the following regularization penalty is used:

Ωd(A,B,C) = ‖A‖1 + ‖B‖1 + ‖C‖1
Putting everything together, the objective function for

the proposed SMART framework can be stated as follows:

min
Γ={W,V,A,B,C}

F(Γ;X ,Y)

=
1

2

S∑
s

T∑
t

(xTs,t(W
TAs + VTBt)− ys,t)2

+
λ

2
‖X − JA,B,CK‖2F + β‖Γ‖1 (3)

where Γ = {W,V,A,B,C} and ‖Γ‖1 denotes applying
an `1 norm on each of the W, V, A, B and C matrices,
respectively. The model parameters W, V and the latent
factors A, B and C can be learned by iteratively optimizing
the objective function with respect to each set of variables
to be solved. Note that the multiple tasks in this framework
are ensembles of spatial multi-task learning over locations
and temporal multi-task learning over timestamps.

4.2 Batch Learning
In this subsection, we present a learning approach based
on an alternating minimization strategy for optimizing
Eq. (3). Since not all terms in the objective function are
differentiable, we employ the proximal gradient descent
method [22] to solve each subproblem. Consider a non-
differentiable objective function f(x) that can be decom-
posed into a smooth, differentiable function g(x) and a
non-smooth function h(x), i.e., f(x) = g(x) + h(x). For
example, the terms involving Frobenius norms in our ob-
jective function are differentiable whereas those involving
the sparsity-inducing L1-norms are non-differentiable. The
proximal gradient descent method would iteratively update
the model parameters as follows:

x(k) = proxtk,h
(
x(k−1) − tk∇g(x(k−1))

)
where x(k) is the parameter to be estimated at step k.
proxtk,h is the proximal operator for the nondifferentiable
function h, ∇g(x(k−1)) is the gradient on the smooth func-
tion g w.r.t. x(k−1) and tk is the step size for the gradient
descent update. The proximal operator for `1 norm function
is the soft-thresholding operator [22]:

proxλ,h(v) = (v − λ)+ − (−v − λ)+

where λ is the threshold parameter. The parameters are up-
dated iteratively by calculating the gradient on the smooth
part of the objective function, and then apply the soft-
thresholding operator (proximal mapping function for `1
norm) to determine its next value. The step size can be found
using a line search algorithm. The gradients of the objective
function with respect to each parameter A, B, C, W, and
V during the alternating minimization step are omitted due
to lack of space.

Note that the batch learning approach described here
requires fitting the model on the entire training set available
at training time. As a result, such a model would have to
be retrained from scratch each time new observation data
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become available, unlike the incremental learning approach
to be described in Section 5.

4.3 Complexity Analysis
This subsection provides the detailed time and space com-
plexity analysis for the batch implementation of the SMART
framework. We assume T and T ∗ (S and S∗) are in the
same magnitude, and will use T and S to simplify the
notations for T , T ∗ and S, S∗ through the analysis. Since
the runtime of the algorithm depends on the number of
iterations, we provide the time complexity for calculating
the gradient of each variable in each iteration. For example,
the calculation for gradient with respect to As takesO(dTk)
time, where d is the number of features, S is the number
of locations, T is the length of the time series, and k is
the number of latent factors. Since the update has to be
performed for every location, its runtime complexity per
iteration is O(dSTk). Similarly, it can be shown that the
update formula for other matrices (B, C, W, and V) also
take O(dSTk) computations per iteration.

In the batch implementation, SMART requires the en-
tire spatio-temporal dataset as well as the parameter set
Γ = {A,B,C,W,V} to be available in order to perform
the optimization. Thus, the overall space complexity for
SMART is O(dST + Sk + Tk + dk). Since k � T, S, the
space complexity is O(dST ). Since S and T may continue to
grow, both the storage and runtime complexities can be very
high, which makes it infeasible to apply the batch learning
algorithm. In next section, we present WISDOM, which is an
incremental learning algorithm to reduce the computational
complexity of SMART so that it can scale up to large-scale
spatio-temporal prediction problems.

5 WISDOM: WEIGHTED INCREMENTAL SPATIO-
TEMPORAL MULTI-TASK LEARNING ALGORITHM

As the size of many spatio-temporal datasets can be very
large, efficient algorithms are needed to learn the param-
eters of the SMART framework described in the previ-
ous section. In an incremental learning setting, the spatio-
temporal data D = (X ,Y) is assumed to be periodically
augmented with a new data chunk, (X new,Ynew), where
X new ∈ <S×1×d and Ynew ∈ <S×1 if the data is for a
new time period, or X new ∈ <1×T×d and Ynew ∈ <1×T

if the data is from a new location. We termed the former as
incremental learning over time and the latter as incremental
learning over space. Two implementations of the WISDOM
algorithm have been developed—one for incremental learn-
ing over space and the other for incremental learning over
time. A hybrid approach that combines both learning strate-
gies can be easily developed to handle new observation data
along the space and/or time dimensions.

For incremental learning, our goal is to adapt the existing
models without rebuilding the model from scratch each
time new observations become available. To ensure that the
model parameters and latent factors do not vary signifi-
cantly from their previous values, a smoothness criterion
can be added to the objective function. The optimization
problem for incremental learning is formulated as follows:

min
Γ
Q(Γ, Γ̃) = F(Γ;X new,Ynew) + G(Γ, Γ̃),

where Γ̃ are the previous parameter values before the up-
date, F(Γ;X new,Ynew) is given by Eq. (3) and

G(Γ, Γ̃) = ‖W − W̃‖2F + ‖V − Ṽ‖2F + ‖A− Ã‖2F
+ ‖B− B̃‖2F + ‖C− C̃‖2F . (4)

5.0.1 Incremental Learning over Space
First, we discuss WISDOM’s approach for incremental
learning over space, when data from a new location be-
comes available. Let T be the current time and S be the
current number of locations. We assume that the new lo-
cation has historical observation data from time t0 to T . If
the location has only one observation data, then t0 = T .
We further assume that the spatial latent features for other
locations are unaffected by the addition of the new location,
i.e., ∀s : Ãs = As. However, the latent features for other
modes (B and C) as well as the parameters of the prediction
models (W and V) can be affected by the addition of the
new data, X new = {xS+1,t0 ,xS+1,t0+1, · · · ,xS+1,T }. For
brevity, we denote the feature vectors for the new location
as XS+1, which is a tensor of size 1× (T − t0 + 1)× d.

The objective function for incremental learning over
space can be expressed as follows:

min
W,V,V,AS+1,B,C

Q(W,V,AS+1,B,C,W̃, Ṽ, B̃, C̃)

=
1

2

T∑
t=t0

[
xTS+1,t(W

TAS+1 + VTBt)− yS+1,t

]2
+
λ1
2
‖XS+1 − JAT

S+1,B,CK‖2F +
η1
2

[
‖W − W̃‖2F

+ ‖V − Ṽ‖2F + ‖B− B̃‖2F + ‖C− C̃‖2F
]

+ β1‖W,V,AS+1,B,C‖1 (5)

η1 is the hyperparameter to control the model consistency
from previous learnt models, which can be tuned using
cross validation. Note that AS+1 is a column vector that
represents the spatial latent features for the new location
and xS+1,t denote the feature vector of the location at time
t. The smoothness parameter η1 determines the extent to
which the previous model parameters should be retained.
The optimization problem can be solved using the proximal
gradient descent method. Derivation of the gradients of the
objective function with respect to the various parameters are
provided in the conference version of this paper [36].

5.0.2 Incremental Learning over Time
Next, we examine WISDOM’s strategy for incremental
learning over time. Let S be the number of locations and
T be the current time. Similar to other online learning
schemes, we assume the availability of the feature vectors
of predictor variables for all S locations at time T + 1. This
information will be used to determine the temporal latent
factor BT+1 for the new time period. Similar to the strategy
used for incremental learning over space, we assume the
new data for time T + 1 does not affect previous temporal
latent factors B1,B2, · · · ,BT .

Our strategy for incremental learning over time is to
perform the following two steps: first, we learn the temporal
latent factor BT+1 based on the values of the predictor
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variables for the new time period. The updated temporal
latent factor is used to make an ensemble prediction using
Eq. (1). Next, the model parameters and other latent factors
are subsequently updated when the true values of the target
variable for the new time period YT+1 is available at all
locations.
Step 1: Update formula for BT+1. The objective function
for updating the temporal latent factor is given below:

min
BT+1

Q(BT+1) =
λ2
2
‖X T+1 − JÃ,BT

T+1, C̃K‖2F (6)

=
λ2
2
‖XT+1(2) −BT

T+1

(
C̃� Ã

)T
‖22,

which can be solved in closed form. The decomposition can
be performed before YT+1 is observed.
Step 2: Update formula for model parameters and latent
factors. After YT+1 is observed, the update formula for the
model parameters and other latent factors can be found by
optimizing the following objective function:

min
W,V,A,BT+1,C

Q(W,V,A,BT+1,C,W̃, Ṽ, Ã, C̃)

=
1

2

S∑
s

(xTs,T+1(WTAs + VTBT+1)− ys,T+1)2

+
λ2
2
‖X T+1 − JA,BT

T+1,CK‖2F

+
η2
2

(‖W − W̃‖2F + ‖V − Ṽ‖2F + ‖A− Ã‖2F
+ ‖C− C̃‖2F ) + β1(‖W,V,A,BT+1,C‖1) (7)

Solving Eq. (7) to obtain the update formula for W, V,
A, BT+1 and C is similar to the approach described for
incremental learning over space. We omit their details due
to lack of space.

5.0.3 Incremental Learning over Space-Time
The approaches described in the previous subsections can
be combined to create a hybrid approach for incremental
learning over both space and time. Specifically, the WIS-
DOM algorithm can be initially applied to a subset of the
locations at a given starting time. As time progresses, it will
apply the model update approach for incremental learning
over time to the newly acquired observation data. Similarly,
when data from a new location becomes available, it will
then invoke the update strategy for incremental learning
over space.

A summary of the detailed algorithm is given in Algo-
rithm 1.

5.1 Complexity Analysis
This section presents the computational complexity of the
WISDOM algorithm. For incremental learning over space,
the time complexity for calculating the gradients for each
iteration for the proximal gradient descent algorithm is
O(dTk). Since both d and k are constants and are typically
smaller than T , the complexity is linear in time. Similarly,
the runtime complexity for incremental learning over time
can be shown to be O(dSk), whenever the data for a new
time period is observed.

In order to update the latest models, WISDOM will
need to maintain the model parameters (A, B, C, W

Input: X new, Ynew, W̃, Ṽ, Ã, B̃, C̃, λ1, λ2, β1, β2, η1,
η2, K ;

if X new is XS+1 then
Solve AS+1, B, C, W and V by optimizing Eq.
(5);

A = [A; AT
S+1];

S = S + 1;
else if X new is X T+1 then

Solve BT+1 by optimizing Eq. (6);
∀s′ < S, predict ŷs′,T+1 by Eq. (1) using BT+1 and

previous A, W and V;
∀s′ < S, observe ys′,T+1;
Solve A, BT+1, C, W and V by optimizing Eq.
(7);

B = [B; BT
T+1];

T = T + 1;
Algorithm 1: Pseudocode for incremental learning over
space and time by WISDOM algorithm.

and V), and the current observation X new ∈ RS×1×d and
Ynew ∈ RS×1 for new station (or X new ∈ R1×T×d and
Ynew ∈ R1×T for new time). Hence, the space complexity
is O (Sd+ Sk + Tk + dk) or O (Td+ Sk + Tk + dk). The
WISDOM algorithm is clearly much more efficient, both in
terms of its runtime and space complexities, compared to its
batch counterpart.

6 EXPERIMENTAL EVALUATION

We use a global-scale climate dataset to evaluate the per-
formance of the SMART framework. We consider two im-
plementations of the framework, a batch learning algo-
rithm (denoted as SMART-b), which must be retrained from
scratch each time new observations are available, and an
incremental learning algorithm (denoted as WISDOM).1 The
goals of our experiments are as follows:
1) To demonstrate the value of using an ensemble of spatial
and temporal prediction models.
2) To show the trade-off in accuracy and efficiency between
SMART-b and WISDOM.
3) To compare the performance of WISDOM against other
baseline algorithms.
4) To provide possible interpretations with domain knowl-
edge of the latent factors derived by the SMART framework.
5) To determine the value of incorporating known patterns
from the domain into the SMART framework.

6.1 Dataset Description

The climate data used in this study was obtained from
two different sources. First, we downloaded the monthly
climate observation data from the Global Surface Summary
of Day (GSOD)2 website. These monthly values of total
precipitation (prcp), maximum (tmax), minimum (tmin),
and average (tmean) temperature are used to represent the
target variable of our prediction tasks. We created 4 datasets,

1. We published the SMART-b and WISDOM code at https://github.
com/Jianpeng-Xu/TKDE-SMART

2. https://data.noaa.gov/dataset/dataset/
global-surface-summary-of-the-day-gsod
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one for each response variable. The second data source
corresponds to a coarse-scale gridded climate data from
NCEP reanalysis3. We use the data to create the predictor
variables for our climate prediction task. Although there are
hundreds of variables available in the NCEP reanalysis data,
we select 13 of them as our predictor variables with the help
of our domain expert. A detailed description of the selected
features is given by Table I in [36].

GSOD provides monthly climate data from more than
30,000 monitoring sites worldwide, spanning a time period
between 1942 to the present time. Since the data from earlier
time periods are mostly missing, we restrict our experiment
to data from January 1985 to November 2015 (when we
collected our dataset) for a total of 371 months. During
preprocessing, we remove the sites that have missing values.
Meanwhile, we randomly choose one site if multiple sites
are co-located in the same grid. Thus, each grid of the NCEP
reanalysis data contains only one GSOD site. This reduces
the number of sites in our data set to 1,118. Hence, the size
of the spatio-temporal tensor after preprocessing is 1118
locations × 371 time steps × 13 predictor variables, which
contains more than 5.3 million elements. We take the first
20 years of the data as training set and the last 11 years as
test set. As a data pre-processing step, we use the seasonal
mean and standard deviation from the training data for each
timeseries to deseasonalize and standardize both training
and test sets.

6.2 Analysis of SMART Framework
In this section, we demonstrate the value of using an en-
semble of spatial and temporal multi-task learning models
in supervised learning. For this experiment, we train the
models on one snapshot of the data (predictor variables
of all 31-year data, and response variable of the first 20-
year data from all stations), and evaluate them using the
rest of the data (the last 11-year data of all stations). Note
that the nature of the application4 allows us to utilize
the predictor variables for the test set during the training
process. We compare SMART-b against its two variants:
SMART-S and SMART-T, where SMART-S is a variation of
the framework that considers only the spatial component
of SMART-b (using only A in the first term of Eq. 3), and
SMART-T is the variation that considers only the temporal
component of SMART-b (using only B in the first term of
Eq. 3). We use mean absolute error (MAE) over locations to
evaluate the performance. The comparison result is shown
in Table 1. Note that SMART-b performs slightly better than
SMART-S in all 4 response variables and significantly out-
performs SMART-T in all response variables. This suggests
that having an ensemble of spatial and temporal models
can improve predictive performance compared to modeling
using the spatial or temporal factors individually.

6.3 Experimental Setup for Incremental Learning
In this section, we describe the setup for our following
experiments, where the models can either be generated

3. http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.
reanalysis.derived.html

4. In practice, this is considered a semi-supervised learning scenario,
where the predictors are obtained from the outputs of climate models.

TABLE 1: MAE for SMART-b and its variants

tmax tmin tmean prcp
SMART-b 0.5178 0.5962 0.4696 0.7411
SMART-S 0.5268 0.6005 0.4698 0.7451
SMART-T 0.6016 0.7041 0.5756 0.7660

from scratch (using a batch algorithm) or updated from an
existing model (using an incremental learning approach).
In simulating the incremental learning process, each new
observation may correspond to a randomly selected new
location or a subsequent time period. The models must
make a prediction first before they receive feedback on
whether their predictions are correct. All the models will
be continuously updated for the entire 30-year time period.
We use the first 10 years (1985 to 1994) of data as an initial
training period, and the performance of the models for the
next 10 years (1995 to 2004) will be used for validation.
We use the predictions made in the last 11 years (2005 to
2015) to assess the accuracy of the models. The same setup
also applies to SMART-b, where the spatial and temporal
models are re-built from scratch each time a new observa-
tion is available during the test period. For SMART-b and
WISDOM, we set their number of latent factors to k = 5 and
randomly select 100 sites as the initial starting locations.

A customized MAE is used to evaluate the performance
of the various algorithms:

MAE =

T∑
t

∑St

s=1 |ys,t − ŷs,t|∑St

s=1 1
/T,

where St denotes all available locations at time t.
The MAE is calculated for each station s starting from

its corresponding test period. For example, if a station was
introduced during the training or validation period, then
its MAE is calculated for the entire 10-year test period.
However, if the station was first introduced during the
testing period, its MAE is computed starting from the time
it was introduced. We repeated the experiments 5 times and
reported their averaged MAE and the standard deviation
over the 5 runs, where the sequence of observations (from
new location or new time) in each run is randomly chosen
using different seeds.

6.4 Comparison between SMART-b and WISDOM
We first compare the batch learning algorithm SMART-
b against the incremental learning algorithm WISDOM in
Table 2. As expected, SMART-b performs better than WIS-
DOM in all datasets, due to the additional information from
the historical data. However, SMART-b will not be able
to handle newly observed data efficiently as it will need
to re-trained from scratch each time when there are new
time points or locations available. This reflects the trade-
off between the accuracy and efficiency of the modeling.
In particular, using the same computing environment, the
average runtime for each update step for SMART-b and
WISDOM over four response variables are given in Table
2. Note that there are altogether 1388 update steps in our
experiment, including 1018 steps for incremental update
over space and 370 steps for incremental updates over time.
The results suggest that the average runtime for WISDOM
is over 60 times faster than that of SMART-b.
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TABLE 2: Performance comparison for SMART-b and WISDOM

MAE (std) Average Runtime per Update
SMART-b WISDOM Accuracy Loss SMART-b WISDOM Runtime Gain

tmax 0.5445(0.0033) 0.5632(0.0032) 3.43% 35.74(1.5137) 0.5270(0.0068) 66.8×
tmin 0.5982(0.0042) 0.6164(0.0045) 3.04% 35.51(1.8677) 0.5245(0.0015) 66.7×
tmean 0.5005(0.0048) 0.5331(0.0059) 6.51% 35.76(1.2443) 0.5261(0.0073) 67.0×
prcp 0.7723(0.0191) 0.7756(0.0149) 0.43% 36.52(3.0064) 0.5232(0.0016) 68.8×

In addition, we also examine how well WISDOM per-
forms over time compared to SMART-b. The yearly aver-
aged MAE results are shown in Fig. 3 (this figure is gener-
ated based on one run of the experiments). As expected,
SMART-b has a lower error compared to WISDOM on
all 4 datasets for almost all of the years. Meanwhile, the
MAE of WISDOM gradually becomes closer to the MAE of
SMART-b after the first 10 years of training period, with
the difference between the two stabilizing after the year
2000. The results given in Table 2 further suggest that the
prediction accuracy for WISDOM is only marginally worse
than that for SMART-b, with an accuracy loss of at most
6.51%.
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Fig. 3: Error comparison over time between SMART-b and
WISDOM.

6.5 Comparison between WISDOM and Baseline Meth-
ods

Next, we compare the performance of WISDOM against
the following baseline incremental learning algorithms. To
ensure fairness, the order in which new observations are
introduced over space and time is the same for all the
algorithms of each run:
1) STL (Single Task Learning): Each location has its own
local (linear) model that is incrementally updated using a
gradient descent approach when it has a new observation
data. When a new location is introduced, its parameters are
randomly initialized and updated only when new observa-
tion data for the location becomes available.
2) ALTO: This is an adaptation of the method in [39],
which assumes the model parameters for multiple response
variables are in the form of a tensor. To extend ALTO to
our problem setting, we make the following changes: First,
the tensor is reduced to a matrix W since each data set
has only one response variable. Second, we replace tensor
decomposition with singular value decomposition and ap-
ply it to the noise-perturbed weight matrices to obtain the

updated model parameters. We have also extended ALTO to
perform incremental learning over space: when data from a
new location is available, we apply linear regression to the
new data and add the estimated parameters as a new row
in W. The modified W is then projected to its low-rank
representation.

In addition to the two baseline methods, we also con-
sider the following two variations of WISDOM:
3) WISDOM-S: This variant considers only the spatial com-
ponent of the framework. Specifically, we remove all terms
related to V in Eq. (5) and (7).
4) WISDOM-T: This variant considers only the temporal
component of the framework. We remove all terms related
to W in Eq. (5) and (7).

We first present the results comparing WISDOM against
the two baseline algorithms, STL and ALTO. Table 3 shows
that WISDOM outperforms STL for all target variables,
which suggests the importance of incorporating spatial au-
tocorrelation into the learning framework. WISDOM also
outperforms ALTO, which is another online tensor learning
approach for spatio-temporal data. There are two possible
reasons for this. First, ALTO performs the following simple
update to its weight matrix each time new observation
data is available5: W(k) = (1 − α)W(k−1) + αXZ† [39].
The single-step update may not be sufficient to learn the
right weights of the prediction model. In contrast, WISDOM
learns the optimal weights that minimize an incrementally
updated objective function. Second, ALTO performs a low-
rank decomposition on a perturbed weight matrix whereas
WISDOM decomposes the data tensor itself. The results
suggest that the latter strategy is more effective as the
observation data is potentially noisy.

Next, we compare WISDOM against its variants in Ta-
ble 3. Observe that WISDOM and WISDOM-S outperform
WISDOM-T on 3 out of 4 data sets, which suggest the impor-
tance of incorporating a predictive model from the spatial
latent factors. Furthermore, both WISDOM and WISDOM-T
outperform WISDOM-S in terms of precipitation prediction.
This makes sense as precipitation generally tends to have
a smaller spatial autocorrelation compared to temperature
[6], which is why temporal autocorrelation plays a more
significant role in improving its prediction.

6.6 Convergence Analysis of WISDOM
To demonstrate the convergence of WISDOM, Fig. 4 shows
the average MAE of WISDOM for all locations across time
for one of the 5 experimental runs. A location is included
in the average MAE calculation only after the data for the
location becomes available. WISDOM starts to converge
after the first 10 years, which is our initial training period.

5. We use incremental update of the weight matrix instead of exact
update since the latter requires the entire data to be available in
memory.
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TABLE 3: MAE for baseline methods, WISDOM and its variant methods

STL ALTO WISDOM WISDOM-S WISDOM-T WISDOM-KP
tmax 0.7550 (0.0043) 0.7656 (0.0023) 0.5632 (0.0032) 0.594 (0.0220) 0.5982 (0.0083) 0.5804 (0.0052)
tmin 0.7376 (0.0050) 0.7614 (0.0010) 0.6164 (0.0045) 0.6304 (0.0119) 0.6509 (0.0061) 0.6349(0.0024)

tmean 0.7138 (0.0030) 0.7375 (0.0018) 0.5331 (0.0059) 0.5512 (0.0212) 0.5604 (0.0118) 0.5516(0.0026)
prcp 0.9550 (0.0161) 0.7963 (0.0140) 0.7756 (0.0149) 0.8850 (0.0358) 0.8445 (0.0269) 0.7823 (0.0158)
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Fig. 4: Changes in MAE over time for WISDOM

Note that for precipitation dataset, the error increases after
the training period and converges gradually in the test
period. This is perhaps due to the way the dataset was de-
seasonalized and standardized (see Section 6.1). Specifically,
we assume that the seasonal means and standard deviations
do not change significantly from the training period to the
test period. While more sophisticated preprocessing steps
can be performed, this goes beyond the scope of this paper.

6.7 Analysis of Spatial Latent Factors

Next, we investigate the spatial latent factors derived by
WISDOM. Each spatial latent factor is a vector whose el-
ements represent the membership of each location to the
given latent factor. Fig. 5 shows one example of the spatial
distribution of the latent factors for precipitation prediction.
The figure shows that the latent factors have varying spatial
distributions, which suggests that they capture different
aspects of the spatial variability in the data. For example,
the first latent factor is dominant in Europe and northeast of
America whereas the second latent factor is more influential
in the eastern part of China.

WISDOM utilizes the spatial latent factors to perform
incremental learning over space. To further demonstrate
the benefit of incremental learning over space, we compare
the average annual MAE for the first 100 randomly chosen
locations when the model is updated with and without
incremental learning over space. Specifically, in the latter
case, no new locations are added into the data set as time
progresses. As shown in Fig 6, adding data from new
locations indeed helps to improve the MAE of the first 100
randomly chosen locations.

6.8 Analysis of Temporal Latent Factors

Each temporal latent factor derived by WISDOM can be rep-
resented as a time series. To understand their significance,
we correlate6 the temporal latent factors against the known
climate indices, including Arctic Oscillation Index (AOI),

6. We used the absolute value of the correlation to remove the sign
effect.
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Fig. 5: Spatial distribution of the spatials factor learned by
WISDOM for prcp. (Figure is best viewed in color).
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Fig. 6: Average annual MAE comparison between WISDOM
with incremental learning over space and WISDOM without
incremental learning over space for the 100 initially chosen
locations

North Atlantic Oscillation (NAO), Western Pacific Index
(WPI), Quasi-Biennial Oscillation (QBO), Pacific Decadal
Oscillation (PDO), and Southern Oscillation Index (SOI).
Fig. 7 shows the resulting correlation for the tmax, tmin,
tmean and prcp data sets based on one run of the experi-
ment. Though the temporal latent factors for all data sets are
different, we found some of the factors correlate highly (over
0.6) with the existing climate indices. This result suggests
that the temporal latent factors may capture some of the
previously known climate phenomena, represented by the
climate indices such as AOI and NAO. For each temporal
latent factor and climate index, we also calculate the per-
cent of locations whose temperature or precipitation has a
correlation above 0.3. The results in Fig. 8 suggest that (1)
not all climate indices have a significant number of locations
highly correlated with them and (2) some latent factors have
significant correlation with a relatively large number of loca-
tions, comparable to the known indices. More importantly,
as some of the latent factors do not correlate highly with
the known indices, this suggests that our framework can
potentially discover new indices that capture the climate
variability for many locations.
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Fig. 7: Correlations between the climate indices and the
temporal factors learned from WISDOM
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Fig. 9: Stations where WISDOM-KP outperforms WISDOM
more than 0.05 in MAE evaluation for tmin and vise versa.

6.9 Incorporating Known Patterns (WISDOM-KP)
Surprisingly, the results from Section 6.8 show that none of
the temporal latent factors were found to correlate highly
with SOI, which is a surrogate time series for El Niño. One
of the strengths of WISDOM is its ability to incorporate
known domain patterns as additional constraints for its
formulation. In order to incorporate known patterns such
as SOI, we simply fix one of the columns in the temporal
latent factor matrix B to be the time series of SOI and
learn the remaining spatial and temporal latent factors using
WISDOM. We denote this approach as WISDOM-KP. The
MAE results comparing WISDOM against WISDOM-KP are
shown in Table 3. The results suggest that WISDOM-KP
achieves comparable (although slightly worse) results as
WISDOM in terms of their average MAE.

In addition, we also compared the number of locations
where WISDOM-KP outperforms WISDOM in one of the 5
runs. The MAE for WISDOM-KP is lower than WISDOM
in around 30% of the locations. This is not surprising as
we do not expect SOI to accurately capture the climate
variability for all locations. Instead, there are locations that
are expected to benefit from using SOI as one of the tem-
poral latent factors. To identify such locations, we plot a
map of the locations in which WISDOM-KP is better than
WISDOM, and vice-versa, for predicting tmin in Fig. 9. The
results suggest that by incorporating SOI, an improved pre-
dictive performance is observed in areas such as Australia,
part of South America, northeast of North America, part of
Europe and some locations around Arctic Ocean. Some of
these locations are consistent with the results of previous
studies [27].

6.10 Time Complexity and Scalability
We have analyzed the time complexity of WISDOM in
Section 5.1. To show the scalability of WISDOM on different
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Fig. 10: Scalability test for WISDOM on different dimensions.

dimensions empirically, we create a set of synthetic datasets
by fixing the sizes of two dimensions of a 3-mode tensor and
varying the size of the third dimension. To test the scalability
of the algorithm over space, we randomly generate a set of
datasets (X ∈ <S×T×d,Y ∈ <S×T ) by setting T = 2000,
d = 20, and varying S = {1000, 2000, 3000, 4000, 5000}.
Similarly, to test the scalability over time, we set S = 2000,
d = 20, and vary T = {1000, 2000, 3000, 4000, 5000}, and
to test the scalability over feature space, we set S = 2000,
T = 2000 and vary d = {50, 100, 150, 200, 250}. We run
the WISDOM algorithm on each of the datasets and record
the runtime, which are illustrated in Fig. 10. Note that the
runtime is almost linear with respect to S, T and d, which
is consistent with our theoretical analysis and validates the
scalability of the WISDOM framework.

7 CONCLUSIONS

This paper presents a spatio-temporal multi-task learning
framework named SMART for multi-location prediction
based on supervised tensor decomposition. The proposed
framework constructs both spatial and temporal prediction
models of the data and aggregates the output to obtain
the final prediction. In order to efficiently handle the incre-
mental learning scenario where the data becomes available
repeatedly over space or over time, a novel incremental
learning algorithm called WISDOM is developed to simul-
taneously extract the latent factors of the spatio-temporal
data and learn the spatial and temporal prediction models
only based on the current observed data and the old mod-
els learned previously. The experiments for evaluating the
methods are performed on a global-scale climate data. The
results show the trade-off between accuracy and efficiency
by comparing WISDOM and SMART. SMART outperforms
WISDOM in all datasets in terms of accuracy, but has a
much higher computational complexity. In addition, WIS-
DOM outperforms several baseline algorithms under the
incremental learning scheme and can easily accommodate
known patterns from the spatio-temporal domain.
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