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Abstract
In climate and environmental sciences, vast amount
of spatio-temporal data have been generated at
varying spatial resolutions from satellite observa-
tions and computer models. Integrating such di-
verse sources of data has proven to be useful for
building prediction models as the multi-scale data
may capture different aspects of the Earth system.
In this paper, we present a novel framework called
MUSCAT for predictive modeling of multi-scale,
spatio-temporal data. MUSCAT performs a joint
decomposition of multiple tensors from different
spatial scales, taking into account the relationships
between the variables. The latent factors derived
from the joint tensor decomposition are used to train
the spatial and temporal prediction models at dif-
ferent scales for each location. The outputs from
these ensemble of spatial and temporal models will
be aggregated to generate future predictions. An
incremental learning algorithm is also proposed to
handle the massive size of the tensors. Experimen-
tal results on real-world data from the United States
Historical Climate Network (USHCN) showed that
MUSCAT outperformed other competing methods
in more than 70% of the locations.

1 Introduction
The spatio-temporal data obtained from climate and environ-
mental sciences are often available at multiple spatial reso-
lutions. For example, Table 1 shows examples of climate
data generated by different global and regional climate mod-
els, which can have varying spatial scales, from tens to sev-
eral hundred kilometers. Such multi-scale data provide useful
information that can aid scientists in understanding the vari-
ability of the climate system in order to predict its future be-
havior. However, since the data at different scales are po-
tentially correlated with each other, concatenating them to-
gether into a single feature vector may not be an effective
strategy for building robust prediction models. Utilizing only
the data from the finest resolution is also not a viable approach
as the data at coarser resolutions may capture broad-scale ef-
fects that cannot be easily discerned from the finest resolution
data. Finding an effectiveway to integrate themulti-scale data

Climate Dataset Scale
NCEP North American Regional Reanalysis 32 km

Canadian Regional Climate Model 45 km
Weather Research & Forecasting Model 50 km

HadCM3 Global Climate Model 300 km

Table 1: Spatial resolutions for various climate datasets

into a prediction modeling framework is thus a challenge that
needs to be addressed [Miller et al., 2015].
For applications such as climate modeling, in addition to

the multi-scale nature of the data, the predictions must be
made at multiple locations. Although a model can be trained
to fit the training data at each location independently, the out-
put predictions may not be spatially coherent as the models
may not preserve the spatial autocorrelation of the data. Fur-
thermore, the amount of training data may vary from one loca-
tion to another, making it difficult to obtain accurate models
for locations with limited training data. Recent works have
demonstrated the advantages of applying multi-task learn-
ing to such multi-location prediction problems [Xu et al.,
2016a][Xu et al., 2016b][Gonçalves et al., 2016][Gonçalves
et al., 2017][Yu et al., 2015]. These approaches consider the
spatial relationship between different locations to jointly train
the models. However, none of them are designed to handle
multi-scale data. Furthermore, these approaches are mostly
developed for batch learning algorithms, making it harder to
scale them up to larger spatio-temporal datasets.
Finally, model interpretability is also important for many

spatio-temporal applications. For example, climate scientists
are interested to understand the major driving factors that in-
fluence the climate variability at various locations. Some of
the factors, such as the El Niño phenomenon, are well-known
to the scientists, but there may be other broad-scale patterns
governing the variability of the data. Thus, it would be useful
to develop a framework that can shed light on these patterns
in addition to generating accurate predictions.
To address these challenges, this paper presents a novel

framework called MUSCAT (MUlti-SCAle Spatio-Temporal
Learning) for the predictive modeling of multi-scale spatio-
temporal data. MUSCAT represents the spatio-temporal data
at each scale as a 3-dimensional tensor. The tensors are then
jointly decomposed into a set of shared latent factors, repre-
senting the various patterns that can help summarize the vari-
ability observed in the spatio-temporal data. MUSCAT em-



ploys an ensemble of spatial and temporal prediction models
to make its predictions, where the spatial models are trained
to fit the climate response variable against the shared spa-
tial latent factors of the tensors whereas the temporal mod-
els are trained to fit the respective temporal latent factors.
More importantly, the multi-scale tensor decomposition and
the fitting of spatial and temporal prediction models are per-
formed simultaneously in a unified learning framework. As
this can be computationally expensive due to the massive
size of the spatio-temporal data, an incremental learning al-
gorithm is proposed. The algorithm enables the latent factors
and model parameters to be iteratively learned over space and
time, thereby avoiding the need to rebuild the models from
scratch each time there is new data available.
In short, the main contributions of this work are:
1. A novel framework called MUSCAT is proposed for the

predictive modeling of multi-scale spatio-temporal data.
The framework allows the latent spatial and temporal
patterns shared by the multiple scales to be simultane-
ously derived using a multi-tensor decomposition ap-
proach. MUSCAT also trains an ensemble of spatial and
temporal prediction models, whose outputs will be ag-
gregated when making predictions for a new location or
for a future time period.

2. To improve its scalability, an incremental learning algo-
rithm over space and time is proposed.

3. Experiments performed on real-world data from the
United States Historical Climate Network (USHCN)
demonstrates the superiority of MUSCAT compared to
other competing algorithms.

2 Related Work
This section reviews some of the previous work related to this
research. In recent years, multi-task learning has been proven
to be effective at learning models for predicting multiple tasks
jointly by taking into account the relationships among the
tasks [Caruana, 1997]. The success of multi-task learning
for spatio-temporal data has also been demonstrated in [Xu
et al., 2017][Xu et al., 2016a][Xu et al., 2016b][Zhao et al.,
2015][Yu et al., 2015]. However, none of these approaches
are designed for multi-scale data.
The term multi-scale learning has been used rather loosely

in the literature to describe different classes of methods.
For example, in traditional machine learning, it has referred
to techniques based on multiple kernels [Bellocchio et al.,
2012], multi-covariance matrices [Walder et al., 2008] or
multi-basis functions [Nounou and Nounou, 2010], none of
which are designed to handle multi-scale data. Instead, they
were developed to extract multi-scale features from the given
data. A closer related area is in deep learning, where multi-
scale modeling approaches have been developed for com-
puter vision applications. Here, the multi-scale data refer
to different resolutions of an image [Bertasius et al., 2015;
Zhao and Du, 2016]. Other multi-scale learning approaches,
such as those proposed in [Neverova et al., 2014] and [Eigen
et al., 2014] do not consider the relationships between data at
different scales.

Tensor decomposition has been widely used to explore the
latent features of multi-dimensional data [Kolda and Bader,
2009]. This includes previous work on coupled tensor de-
composition [Acar et al., 2011; Ermiş et al., 2015] for the
joint analysis of data from multiple sources. However, such
methods aremostly designed for batch learning, and thus, can-
not efficiently handle the dynamic growth of data in differ-
ent dimensions (e.g., spatial and temporal). As an alternative,
incremental or online tensor decomposition approaches have
been developed in recent years [Sun et al., 2008; Zhou et al.,
2016]. These methods are unsupervised, and thus, are not as
effective compared to the MUSCAT framework proposed in
this paper. More recently, Yu, et al. [Yu et al., 2015] also
presented an online supervised tensor decomposition method.
Unlike MUSCAT, the method employed a tensor to represent
the model parameters instead of the data. As will be shown
in our experiments, the strategy used by MUSCAT to repre-
sent data as tensors instead of model parameters as tensors is
more effective for modeling the multi-scale spatio-temporal
data investigated in this study.

3 Proposed MUSCAT Framework
MUSCAT is a supervised learning framework that jointly per-
forms a coupled tensor decomposition on a multi-scale spatio-
temporal dataset and fits the derived latent factors to the re-
sponse variable of interest at multiple locations. This section
presents the details of our proposed framework.

3.1 Preliminaries
Let D = (X (1), ...,X (L),Y) be a multi-scale spatio-
temporal dataset, where X (l) ∈ ℜS×T×dl denote the spatio-
temporal tensor of predictor variables at the l-th scale, Y ∈
ℜS×T denote the time series of the response variable for all
locations, S is the number of locations, T is the length of time
series, and dl is the number of predictor variables associated
with the l-th scale.
Inspired by previous work on discovering climate in-

dices using SVD [Steinbach et al., 2003], we employ ten-
sor decomposition to extract broad-scale patterns from the
spatio-temporal data. Specifically, the following CANDE-
COMP/PARAFAC (CP) decomposition [Kolda and Bader,
2009] is used to decompose a 3rd-order tensorX into its cor-
responding latent factors, A, B, and C:

X = JA,B,CK = K∑
k=1

ak ◦ bk ◦ ck, (1)

where ak, bk and ck are column vectors corresponding to the
k-th columns of matricesA, B, andC, and ◦ denotes the outer
product operation.

3.2 Supervised Tensor Decomposition for
Multi-Scale Data

For multi-scale spatio-temporal data, the tensor decomposi-
tion can be performed at each scale l as follows:

min
A,B,C(l)

1

vol(l)
∥X (l) − JA,B,C(l)K∥2F +Ωd(A,B,C(l))



where A ∈ ℜS×K denote the spatial latent factors and B ∈
ℜT×K denote the temporal latent factors. Our framework
assumes that the spatial and temporal latent factors A and
B are invariant across all scales. The normalization factor
vol(l) = 2(S×T×dl) ensures that the decomposition at each
scale does not depend on its tensor size. Finally, Ωd(A,B,C)
is the regularization term used to enforce the sparsity of the
latent factors:

Ωd(A,B,C) = β

[
∥A∥1 + ∥B∥1 + ∥C∥1

]
Although the latent factors derived via multi-tensor decom-

position may capture the spatial and temporal variabilities of
the data, they may not be well-suited for predictive modeling
applications. To overcome this problem, MUSCAT incorpo-
rates the multi-tensor decomposition process directly into a
supervised learning framework. Specifically, it assumes that
the prediction for location s at time t is given by the weighted
average of the predictions generated from models trained on
data at different scales, i.e., ŷs,t =

∑L
l αlŷ

(l)
s,t, where αl is

the weight associated with the prediction function of the l-th
scale. The weights are assumed to form a probability simplex
that satisfies αl ≥ 0 and

∑L
l αl = 1.

Furthermore, the predictionmodel at a given scale l is given
by an ensemble of spatial and temporal models:

ŷ
(l)
s,t = x(l)s,t

T
[ K∑

k

As,kw
(l)
k +

K∑
k

Bt,kv
(l)
k

]
, (2)

where x(l)s,t denotes the feature vector for location s and time t
at scale l, w(l)

k and v(l)k are parameters of the spatial and tem-
poral prediction models for the k-th latent factor, while As,k

and Bt,k are the scalar coefficients for the k-th spatial and
temporal latent factors associated with location s and time t,
respectively. Note that we enforce the constraint that the spa-
tial and temporal latent factors are invariant across all scales,
i.e., ∀l : A(l) = A,B(l) = B.
Our framework to simultaneously uncover the latent factors

and derive the parameters for the spatial and temporal predic-
tion models can be formalized as follows:

min
α,W,V,A,B,C

F (α,W,V,A,B,C)

=
1

2

∥∥∥∥ L∑
l

αlŶ(l) − Y
∥∥∥∥2
F

+
λ

2

L∑
l

1

vol(l)

∥∥∥∥X (l) − JA,B,C(l)K∥∥∥∥2
F

+ β

L∑
l

∥∥∥∥[{W(l),V(l),C(l)},A,B]
∥∥∥∥
1

(3)

s.t. ∀l : αl ≥ 0 and
L∑
l

αl = 1

where W, V and C denote the set of W(l), V(l) and C(l) for
l = 1, ..., L respectively for notation simplicity, and Ŷ(l) cor-
responds to the predictions generated by the spatio-temporal

models at scale l, as shown in Equation (2). We also use
∥[{W(l),V(l),C(l)},A,B]∥1 to denote the ℓ1 norm regular-
ization term forW(l), V(l), A, B and C(l), respectively.

3.3 Incremental Learning
Optimizing Eq. (3) can be expensive for large spatio-
temporal data. The problem is further exacerbated by the fact
that the data may grow over time. Learning the model from
scratch whenever there are new data available is not a feasible
solution. In this section, we present an efficient algorithm to
learn the model parameters and latent factors incrementally
over space or time without requiring the memory of old data.
Let Dnew = (X new,Ynew) denote the set of new observa-

tions and Π̃ = {α̃, W̃, Ṽ, C̃, Ã, B̃} be the previous set of
model parameters and latent factors estimated by the algo-
rithm. For incremental learning, the model parameters and
latent factors are updated by optimizing the following objec-
tive function:

min
Π

Q(Π, Π̃) = F(Π;Dnew) + ηΓ(Π, Π̃)

where F(Π;Dnew) is given by Eq.(3) and

Γ(Π, Π̃) =
1

2

L∑
l

(
(αl − α̃l)

2 + ∥W(l) − W̃(l)∥2F

+ ∥V(l) − Ṽ(l)∥2F + ∥C(l) − C̃(l)∥2F
)

+ ∥A− Ã∥2F + ∥B− B̃∥2F ,

is a regularization term to ensure smoothness of the model by
controlling the amount of information to be retained from the
previous model. Our formulation enables the update formula
to be applied when augmented with data from new locations
or when data for a new time period become available. We
consider the former as incremental learning over space and
the latter as incremental learning over time.

Incremental Learning over Space
Let T be the current time step and S be the number of loca-
tions with training data at time T . Without loss of generality,
we assume that the model is updated with new data one lo-
cation at a time. Furthermore, the historical data for the new
location is assumed to be available from time t0 to T . If the
location has only one historical observation, then t0 = T .
For brevity, we denote the multi-scale tensor data for the new
location as X (l)

S+1 ∈ ℜ1×(T−t0+1)×dl for l = 1, ..., L, and
d =

∑L
l=1 dl. With the addition of the new data, the spa-

tial latent factors need to be updated from its previous matrix
ÃS ∈ ℜS×K to AS+1 ∈ ℜ(S+1)×K = [AS ; aTS+1]. We
further assume that the spatial latent factors for other loca-
tions are unaffected by the addition of the new location, i.e.,
AS = ÃS . However, the latent factors for other modes of the
tensor (B and C(l)) as well as the parameters of the prediction
models (αl,W(l) and V(l)) can be affected by the addition of
the new data.
Let ϵS+1,t =

∑L
l αlx

(l)
S+1,t

T
(W(l)T aS+1 + V(l)Tbt) −

yS+1,t be the prediction error at time t. Our objective function



for incremental learning over space is:

min
Π

Q(Π, Π̃)

=
1

2

T∑
t=t0

ϵ2S+1,t +
η1
2
Γ(Π, Π̃)

+
λ1

2

L∑
l

1

Tdl

∥∥∥∥X (l)
S+1 − JaTS+1,B,C(l)K∥∥∥∥2

F

+ β1∥[{W(l),V(l),C(l)}, aS+1,B]∥1

s.t. ∀l : αl ≥ 0 and
L∑
l

αl = 1

where aS+1 is a column vector that represents the spatial la-
tent factors for the new location. The smoothness parameter
η1 determines the extent to which the previous model param-
eters should be retained.
An alternating minimization strategy is used to solve the

optimization problem, and each subproblem is solved by the
proximal gradient descent method [Parikh and Boyd, 2014].
The parameters are updated iteratively by calculating the gra-
dient on the smooth part of the objective function, and then ap-
ply the soft-thresholding operator to determine its next value.
The step size can be found using a line search algorithm. The
details of the gradient calculation is omitted in this paper due
to the space limitation.

Incremental Learning over Time
MUSCAT performs incremental learning over time when
there are new observations available at the new timestamp.
Let S be the number of locations and T be the current time.
We denote the newly acquired data for all S stations at time
T + 1 as {X (1)

T+1,X
(2)
T+1, · · · ,X

(L)
T+1}, where each X (l)

T+1 ∈
ℜS×1×dl corresponds to the data at scale l and d =

∑L
l=1 dl.

We use this information to update the temporal latent factors
from B̃T ∈ ℜT×K to BT+1 ∈ ℜ(T+1)×K = [BT ; bTT+1].
Similar to the strategy for incremental learning over space, we
assume the new data for time T + 1 does not affect previous
temporal latent factors: BT = B̃T .
Incremental learning over time is implemented via the fol-

lowing two steps. First, we learn the temporal latent factor
bT+1 based on the predictor variables for the new time period
before the target variable is observed. Next, the parameters
and latent factors for other modes are updated when the tar-
get variable for the new time period is observed for all the
locations.
Step 1: Updating the temporal latent factor bT+1. The
objective function for updating bT+1 is:

min
bT+1

Q(bT+1) =
λ2

2

L∑
l

1

Sdl
∥X (l)

T+1 − JA,bTT+1,C(l)K∥2F
Note that A and {C(l)} correspond to the matrices obtained
from the previous update. The predictions for the target vari-
able are performed using bT+1 and other model parameters
from previous update.

Step 2: Updating model parameters and latent factors af-
ter observing target variable. After observing the true val-
ues of the target variable at time T +1, the model parameters
and other latent factors are updated by minimizing the follow-
ing objective function:

min
Π

Q(Π, Π̃)

=
1

2

S∑
s

[ L∑
l

αlx
(l)
s,T+1

T
(W(l)T as + V(l)TbT+1)

−ys,T+1

]2
+

η2
2
Γ(Π, Π̃)

+
λ2

2

L∑
l

1

Sdl
∥X (l)

T+1 − JA,bTT+1,C(l)K∥2F
+ β2(∥{W(l),V(l),C(l)},A,bT+1∥1)

s.t. ∀l : αl ≥ 0 and
L∑
l

αl = 1

4 Experimental Evaluation
This section describes the extensive experiments performed
to demonstrate the effectiveness of MUSCAT when applied
to a multi-scale climate dataset.

4.1 Climate Data
The climate data used in our experiments has three spa-
tial resolutions. At the finest scale, monthly climate data
are obtained for more than 300 weather stations from the
United States Historical Climatology Network (USHCN)1.
Four variables—maximum (tmax), minimum (tmin), mean
(tmean) temperature and precipitation (prcp)—are selected as
response variables for our prediction task. We train a predic-
tion model for each response variable separately.
We use two gridded climate datasets, North America Re-

gional Reanalysis (NARR) [Mesinger et al., 2006] and NCEP
reanalysis [Kalnay et al., 1996], to create the predictor vari-
ables. NARR2, which stands for the North American regional
reanalysis dataset, has a spatial resolution of 0.3◦ (32 km)
whereas NCEP reanalysis3 has a coarser resolution of 2.5◦.
Nine variables from NARR (acpcp, air.2m, dlwrf, dswrf,
lftx4, prate, prmsl, pr_wtr, and rhum) along with seven vari-
ables from NCEP reanalysis (cprat.sfc, dlwrf.sfc, dswrf.sfc,
prate.sfc, tmax.2m, tmin.2m, and lftx.sfc) are chosen as pre-
dictor variables.
The monthly climate data span a 30-year period between

January 1985 to November 2015. Table 2 shows the number
of stations and grid cells, which may vary for each response
variable since we discard stations with missing values. The
time series for the predictor and response variables are desea-
sonalized (by subtracting each monthly value from the mean
of its corresponding month) and subsequently standardized.

1http://cdiac.ornl.gov/epubs/ndp/ushcn/ushcn.html
2https://www.esrl.noaa.gov/psd/data/gridded/data.narr.html
3http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.

reanalysis.derived.html



USHCN NARR NCEP
tmax 357 350 146
tmin 341 336 144
tmean 333 328 143
prcp 790 635 159

Table 2: Number of weather stations or grid cells for each response
variable.

4.2 Experimental Setup
The 30-year climate dataset is divided into 3 partitions. We
first incrementally build the models using training data from
the first 10 years (1985-1994) and then apply the models to
validation data from the next 10 years (1995-2004). After
tuning the model hyperparameters using the validation set, we
apply the chosen models to data from the last 10 years (2005-
2015), which serve as our test set. Note that the number of
weather stations associated with the training, validation, and
test sets may vary depending on when each station was in-
troduced into the incremental learning process. Initially, we
randomly choose 100 weather stations as our starting loca-
tions. At each step of the incremental learning process, we
randomly add either a new station or a new time period to up-
date the latent factors and the ensemble of prediction models.
We used the mean absolute error (MAE) metric to evaluate

the performance of various algorithms:

MAE =

∑S
s=1

∑T
t=ts

|ys,t − ŷs,t|∑S
s=1

∑T
t=ts

1

Note that the MAE is calculated for each station s starting
from its corresponding test period ts. For example, if a sta-
tion was introduced into the incremental learning formulation
during the training or validation period, then its MAE is cal-
culated for the entire 10-year test period. However, if the sta-
tion was first introduced during the testing period, its MAE is
computed starting from the time it was introduced. The incre-
mental learning process is repeated 10 times, each time with
a different initialization and random ordering of weather sta-
tions. Results are reported based on the average performance
over the 10 trials.

4.3 Baseline Algorithm
We compare the performance ofMUSCAT against the follow-
ing three incremental learning algorithms.
1. STL (Single Task Learning): A linear model is incre-

mentally trained at each location using the stochastic gra-
dient descent algorithm. When a new weather station is
introduced during the incremental learning process, its
model parameters are initialized randomly and updated
as new observation data become available.

2. ALTO: This is variation of the spatio-temporal multi-
task learning algorithm proposed in [Yu et al., 2015]
which was designed to build models for multiple re-
sponse variables simultaneously.

3. WISDOM: This is a recent spatio-temporal multi-task
learning approach [Xu et al., 2016b] that applies tensor
decomposition on the data but does not distinguish be-
tween variables from different scales.

4.4 Experimental Results
We designed our experiments to (1) compare the performance
ofMUSCAT against the baselinemethods, (2) assess the value
of using multi-scale data, and (3) analyze the significance of
the latent factors.

Comparison against Baseline Methods
Table 3 shows the mean and standard deviation of MAE after
10 trials for each method. The results suggest that WISDOM
and MUSCAT significantly outperform STL and ALTO in all
four datasets, which suggests the advantages of using a multi-
task learning approach based on tensor decomposition. In ad-
dition, MUSCAT outperforms WISDOM on all four datasets
in this study, which shows the benefits of using our approach
to factorize the multi-scale tensors jointly, instead of factoriz-
ing a single tensor with concatenated features from all scales,
which is the approach used in WISDOM. A more detailed
analysis given in Table 5 shows that MUSCAT outperforms
all other competing methods in at least 70% of the stations
for all 4 response variables.

Value of Multi-scale Data
To determine the value of using multi-scale data, we consider
the following two variations of MUSCAT: (1) MUSCAT-
S1, which uses only predictor variables from NCEP, and
(2) MUSCAT-S2, which uses only predictor variables from
NARR. Once again, the results shown in Table 4 suggest
that MUSCAT outperforms WISDOM, MUSCAT-S1, and
MUSCAT-S2 on all four datasets. For temperature predic-
tions, WISDOM is superior thanMUSCAT-S1 andMUSCAT-
S2, which shows the importance of incorporating data from all
scales into the learning framework. However, for precipita-
tion prediction, MUSCAT-S2 outperforms WISDOM, which
indicates that augmenting the predictor variables from the
coarsest scale may degrade the model performance. Nonethe-
less, MUSCAT still achieves the lowest MAE because it can
learn the appropriate weight (α) for combining the predic-
tions from NARR and NCEP reanalysis datasets. To measure
the relative influence of data at different scales on the perfor-
mance of MUSCAT, we examine the mean values of the pa-
rameters α1 and α2 over the 10 trials. The results given in Ta-
ble 6 suggest that α2, which is the weight associated with the
finer-level predictors, has a consistently higher weight than
α1, the weight associated with coarser-level predictors on all
four datasets. This shows that the finer-level predictors have
higher impact on the prediction than coarser-level predictors.

4.5 Analysis of Latent Factors
One of the advantages of using MUSCAT is that the latent
factors can be used to identify the spatial patterns of the data.
To illustrate this, Figure 1 shows the spatial distribution of
the latent factors for precipitation data. For each spatial latent
factor, we plot its top 20% most influential stations on the
map. The results suggest that the latent factors exhibit some
spatially coherent patterns. For example, the first latent fac-
tor is more dominant on the eastern part of the United States,
while the third and fifth latent factors are more influential on
the northwest part of the country.
We also examine the temporal latent factors derived by

MUSCAT by computing their pairwise absolute correlation



tmax tmin tmean prcp
STL 0.4422 ± 0.0016 0.4412 ± 0.0020 0.4141 ± 0.0018 0.5446 ± 0.0012
ALTO 0.5854 ± 0.0064 0.5687 ± 0.0031 0.5656 ± 0.0053 0.5806 ± 0.0051

WISDOM 0.3543 ± 0.0155 0.4001 ± 0.0075 0.3850 ± 0.0236 0.4212 ± 0.0054
MUSCAT 0.3212 ± 0.0074 0.3454 ± 0.0065 0.2844 ± 0.0112 0.4115 ± 0.0023

Table 3: Performance comparison between MUSCAT and the baseline methods on 4 response variables.

tmax tmin tmean prcp
WISDOM 0.3543 ± 0.0155 0.4001 ± 0.0075 0.3850 ± 0.0236 0.4212 ± 0.0054

MUSCAT-S1 0.5492 ± 0.0700 0.4328 ± 0.0115 0.4543 ± 0.0393 0.6194 ± 0.0026
MUSCAT-S2 0.3910 ± 0.0183 0.4094 ± 0.0186 0.4350 ± 0.0532 0.4208 ± 0.0051
MUSCAT 0.3212 ± 0.0074 0.3454 ± 0.0065 0.2844 ± 0.0112 0.4115 ± 0.0023

Table 4: Comparison between two variations of MUSCAT that utilize data from a single scale only.

total # stations STL ALTO WISDOM
tmax 357 355 315 350
tmin 341 330 321 339
tmean 333 331 313 333
prcp 790 780 739 553

Table 5: Number of weather stations that MUSCAT outperforms
other methods for each response variable.

tmax tmin tmean prcp
α1 0.2876 0.3651 0.3360 0.0933
α2 0.7124 0.6349 0.6640 0.9067

Table 6: Mean of α1 and α2 for the climate datasets over 10 trials.

Factor 1

Factor 2

Factor 3

Factor 4

Factor 5

Figure 1: Spatial distribution of the spatial latent factors learned by
MUSCAT for precipitation data (Figure is best viewed in color).

against some of the well-known climate indices, such as AOI,
NAO, WPI, QBO, PDO, and SOI (details of these climate in-
dices are shown in Table 7). The results are shown in Figure
2. The correlation values are not that high, which is not sur-
prising as the study region is limited to the United States only.

5 Conclusion
This paper presents a multi-scale multi-task learning frame-
work for geospatio-temporal data by employing a supervised
multi-tensor decomposition approach. The framework en-
ables the multi-scale relationships to be harnessed by en-
forcing a constraint on the consistency between the spa-
tial and temporal latent factors derived from the multi-scale
geospatio-temporal data. An incremental learning algorithm
over space and time is then proposed to efficiently learn the
weights of the model. Experiments performed on a real-world
multi-scale climate dataset demonstrate the effectiveness of

Climate Index Description
AOI Arctic Oscillation Index
NAO North Atlantic Oscillation
WPI West Pacific Pattern
QBO Quasi-Biennial Oscillation
PDO Pacific Decadal Oscillation
SOI Southern Oscillation Index

Table 7: List of the climate indices used to correlate with the tempo-
ral factors learned from MUSCAT.
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Figure 2: Correlations between known climate indices and the tem-
poral latent factors derived by MUSCAT.

proposed method compared to several baseline algorithms.
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