
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 1

Online Multi-task Learning Framework for
Ensemble Forecasting

Jianpeng Xu, Pang-Ning Tan, Member, IEEE , Jiayu Zhou, and Lifeng Luo

Abstract—Ensemble forecasting is a widely-used numerical prediction method for modeling the evolution of nonlinear dynamic
systems. To predict the future state of such systems, a set of ensemble member forecasts is generated from multiple runs of computer
models, where each run is obtained by perturbing the starting condition or using a different model representation of the system. The
ensemble mean or median is typically chosen as a point estimate for the ensemble member forecasts. These approaches are limited in
that they assume each ensemble member is equally skillful and may not preserve the temporal autocorrelation of the predicted time
series. To overcome these limitations, we present an online multi-task learning framework called ORION to estimate the optimal
weights for combining the ensemble member forecasts. Unlike other existing formulations, the proposed framework is novel in that its
learning algorithm must backtrack and revise its previous forecasts before making future predictions if the earlier forecasts were
incorrect when verified against new observation data. We termed this strategy as online learning with restart. Our proposed framework
employs a graph Laplacian regularizer to ensure consistency of the predicted time series. It can also accommodate different types of
loss functions, including ϵ-insensitive and quantile loss functions, the latter of which is particularly useful for extreme value prediction. A
theoretical proof demonstrating the convergence of our algorithm is also given. Experimental results on seasonal soil moisture
forecasts from 12 major river basins in North America demonstrate the superiority of ORION compared to other baseline algorithms.

Index Terms—Online learning, multi-task learning, ensemble forecasting.

F

1 INTRODUCTION

ENSEMBLE forecasting is a popular numerical prediction
method for modeling nonlinear dynamic systems, such

as climate [1], agriculture [2], ecological [3], and hydrologi-
cal [4] systems. Specifically, the future states of the systems
are predicted using computer models that simulate the
physical processes governing the behavior of such systems.
Since the models may not fully capture all the underlying
processes as well as their parameterization accurately, their
forecast errors tend to amplify with increasing lead time.
Ensemble forecasting [5] aims at obtaining more robust
prediction results by combining outputs from multiple runs
of the computer models. Each run is obtained by perturbing
the starting condition or using a different model represen-
tation of the dynamic system. The forecast generated from
each run corresponds to a series of predictions for a future
time window, T , known as the forecast duration. As an
example, consider the ensemble forecasting task shown in
Fig. 1. There are altogether N sets of forecasts generated
every 5 days, from April 5, 2011 to September 12, 2011. Each
set of forecasts contains time series predictions generated by
d ensemble members (x1, ..., xd) for a forecast duration T .
Our goal is to combine the d ensemble member forecasts in
such a way that produces an aggregated prediction that is
consistent with the true observation data, y.

The ensemble mean or median is often used as a point
estimate of the aggregated forecasts. These estimates assume

• Jianpeng Xu, Pang-Ning Tan and Jiayu Zhou are with the Department
of Computer Science and Engineering, Michigan State University, East
Lansing, MI, 48823.
E-mail: {xujianpe, ptan, jiayuz}@msu.edu

• Lifeng Luo is with the Department of Geography, Michigan State Univer-
sity, East Lansing, MI, 48823.
E-mail: lluo@msu.edu

that every ensemble member prediction is equally plausible,
and thus, their predictions should be weighted equally.
However, as some ensemble members may fit the observed
data less accurately than others, this may degrade the over-
all predictive performance. To illustrate this, consider the
example given in Fig. 2, which shows the basin-averaged
soil moisture percentile forecasts of a hydrological model
ensemble, consisting of 33 members (shown as thin green
lines), along with the ensemble median (shown as a dashed
line) and the true observed data (shown as a solid red line).
The ensemble members were initially calibrated using soil
moisture data from September 2, 2011. Their outputs for that
day are therefore the same. Each ensemble member would
then generate a set of forecasts for a 40-day time window,
from September 7, 2011 to October 12, 2011. Though the
forecasts were quite similar at the beginning, they began to
diverge with increasing lead time. Some ensemble member
forecasts no longer fit the observed data well, thus affecting
the accuracy of the ensemble median approach. This exam-
ple illustrates the need to learn an optimal set of weights for
combining the ensemble member forecasts.

To address this need, this paper presents an online
learning model that can update the weights of the ensem-
ble members according to their predictive skills. Unlike
conventional online learning, the ensemble forecasting task
requires making multiple predictions for a time window of
length T . As the predictions within the window are not
independent due to the temporal autocorrelation of the time
series, the ensemble forecasting task can be naturally cast
as an online multi-task regression problem. Multi-task learning
has been successfully used to solve multiple related learn-
ing problems in many applications, including computer
vision [6] [7], healthcare [8] [9], recommender systems [10]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 2

No observation data

Observation data

Ensemble member 1 forecasts

Ensemble member 2 forecasts

Ensemble member 3 forecasts

Ensemble member 4 forecasts

Legend
d ensemble

member

forecasts observation

x1 x2 xd … y

t1

t2

.

.

.

tT-1

tT

F
o

re
ca

st
 d

u
ra

ti
o

n

Apr. 05, 2011 Apr. 10, 2011 Sep. 07, 2011 Sep. 12, 2011 Sep. 02, 2011

Time

Forecast 1 Forecast 2 Forecast N-1 Forecast N Forecast N-2

forecasts obse

Fig. 1: A schematic illustration of ensemble forecasting task (diagram is best viewed in color). Assuming the latest forecast
was generated on September 12, 2011 for the time period between September 17 and October 22, there is one observation
value available to verify Forecast (N − 1), two observations available to verify Forecast (N − 2), and so on.

10

20

30

40

50

60

70

80

90

S
oi

l M
oi

st
ur

e

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

Ensemble Members
Observations
Ensemble Median

Fig. 2: Seasonable soil moisture forecasts and the observed
time series at a major river basin in North America.

[11], natural language processing [12] and genomics [13]. In
particular, previous studies have shown that the predictive
performance of various learning tasks can be improved by
exploiting the commonalities among the tasks.

Another difference between conventional online learn-
ing and the requirements of ensemble forecasting is that
not all observation data are available when the model is
updated. For example, in Fig. 1, suppose the ensemble
members generate a new set of forecasts every 5 days. Let
forecast N−2 be the set of forecasts generated on September
2 for a 40-day period from September 7 to October 12,
forecast N−1 be the corresponding forecast set generated on
September 7 for the time window September 12 to October
17, and forecast N be the forecast set generated on Septem-
ber 12 for September 17 to October 22. We assume forecast
N to be the most current forecast. When the online learning
model is updated on September 12, forecast N − 2 has two
observed values in its time window, including September 7
and September 12, while forecast N − 1 has a new observed
value for September 12. This means the observation data
are not only incomplete in each time window, the number
of observations also varies from one window to another.
We call this problem online multi-task learning with partially

observed data. Due to this property of the data, instead of
updating the model from its most recent model, we need to
backtrack and revise some of the older models when new
observation data are available.

In this paper, we develop a framework called O-
RION (which stands for Online Regularized multI-task
regressiON) that uses an online learning with restart strategy
to deal with the partially observed data. The framework also
employs graph regularization constraints to ensure smooth-
ness in the model parameters while taking into account the
temporal autocorrelation of the predictions within each time
window. A preliminary version of this work appeared in
[14], where the ORION framework was introduced using
the ϵ-insensitive loss function to predict the weighted con-
ditional mean of the ensemble member predictions. In this
journal submission, the framework is extended to incorpo-
rate a quantile loss function, which is useful for predicting
extreme values of a time series. Forecasting of extreme
values is essential for applications such as climate change
assessment and natural resource management due to their
potential impact on human and natural systems. We also
provide a theoretical proof demonstrating the convergence
of our online learning algorithm. Finally, new experiments
are added to evaluate sensitivity of the results to changes in
the parameter setting of the ORION framework.

The main contributions of this paper are as follows:
• We introduce the problem of online regularized

multi-task regression with partially observed data
and demonstrate its relevance to the ensemble fore-
casting task.

• We present a novel framework called ORION, which
uses an online learning with restart strategy to solve
the problem. It also uses a graph Laplacian to capture
relationships among the learning tasks along with a
passive aggressive update scheme to optimize the ϵ-
insensitive loss function.

• We extended the framework to incorporate a quantile
loss function for predicting extreme events. To the
best of our knowledge, ORION is the first multi-
task regression framework that has been tailored for
extreme value prediction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 3

• We performed extensive experiments using a real-
world soil moisture data set and showed that ORION
outperforms several baseline algorithms, including
the ensemble median, for the majority of the river
basins in our data set.

The remainder of this paper is organized as follows.
Section 2 reviews the related work of this research. Section 3
formalizes the problem while Section 4 presents the ORION
framework with ϵ-insensitive loss function and its solution.
Section 5 extends the framework to a quantile loss function.
Section 6 presents the experimental results for seasonal soil
moisture prediction. Finally, Section 7 summarizes the work
and presents our concluding remarks.

2 RELATED WORK

This section reviews some of the previous works on top-
ics closely related to this paper. An ensemble forecasting
task requires predicting the future values of a time series
over a finite time window, which is quite similar to the
multi-step ahead time series prediction problem [15] [16].
Nevertheless, there is a fundamental difference between
the two prediction problems. Multi-step-ahead time series
prediction methods consider only the historical values of a
time series to infer its future values. Thus, it is susceptible to
the error accumulation problem [15]. In contrast, ensemble
forecasting methods employ multivariate time series gen-
erated from computer models to predict the future values
of a time series. These models generate their outputs by
considering the physical processes that govern the evolution
of the dynamic system.

2.1 Multi-task Learning
Multi-task learning [17] is an approach designed to improve
predictive performance by learning from multiple related
tasks simultaneously, taking into account the relationships
and information shared among the different tasks. Depend-
ing on how information is shared among the different tasks,
multi-task learning can be broadly classified into four cate-
gories. (a) Low-rank representation: This category of meth-
ods assumes that the models for different tasks share a low-
rank representation, either additively [18], [19], [20] or mul-
tiplicatively [21], [22], [23]. Chen et al. [24] incorporated both
additive and multiplicative representation into their formu-
lation with a low-dimensional feature map shared across the
different tasks. (b) Explicit task relationship: This category
of methods explicitly incorporates the task relationship into
the multi-task learning formulation. For example, Zhou et
al. [8] employed a task relationship to ensure smoothness
between time series predictions. Zhang et al. [25] proposed a
regularization formulation to simultaneously learn the task
relationship and task models. (c) Parameter sharing: These
methods assume that the different tasks share a common set
of parameters. For example, Lawrence et al. [26] and Yu et al.
[27] proposed a multi-task Gaussian process where the prior
parameters are shared across different generative processes.
Lee et al. [28] assumed sharing of hyperparameters between
the distributions for different task models while Daume et
al. [29] learned hierarchical Bayesian models that share a
common structure parameterized by a covariance matrix.

(d) Hybrid information sharing: There have been some
recent attempts to combine the information sharing methods
described above. For example, Xu et al. [30] presented a for-
mulation that combines both low-rank representation and
explicit task relations for developing personalized medical
models of patients.

2.2 Online Multi-task Learning

Since the amount of data to be processed in multi-task
learning is generally much larger than single-task learning,
an obvious solution is to extend multi-task learning to an on-
line learning setting. Online learning is a family of learning
algorithms, in which the data are observed in a sequential
manner and the model must be updated incrementally
based on the new observations. Some of the popular online
learning methods include the weighted majority algorith-
m [31], online Passive Aggressive (PA) algorithm [32], and
confidence-weighted algorithm [33].

Dekel et al. [34] presented an approach for online multi-
task perceptron using a global loss function to define the re-
lationships among the different tasks. Unlike our proposed
work, this method assumes the observation values for all
the learning tasks are available when the model is updated.
Relationships among the tasks are also not explicitly de-
fined in their objective function. Another perceptron-based
online multi-task learning method was proposed in [35],
which uses an empirical loss function with co-regularization
among the tasks. Since the method performs an update
one task at a time, the results are order-dependent. Our
method overcomes this problem by incorporating the task
relationship into the objective function and providing an
update solution that allows all the tasks to be updated
simultaneously. Saha et al. [36] extended the work in [35] by
proposing a method that simultaneously learns the model
and task relation matrix using an alternating optimization
scheme. Li et al. [37] proposed a collaborative online multi-
task learning approach, which is an extension of the method
given in [38] to an online learning setting. Sun et al. [39]
employs a stochastic gradient descent approach to solve
its multi-task learning problem. Another recent work on
online multi-task learning considers a regret-minimization
approach under expert advice model [40]. None of the
previous works are designed for partially observed data or
for predicting extreme events in a time series.

3 PROBLEM FORMULATION

We consider a variation of the online multi-task learning
process described in [34], in which the learning proceeds
in a sequence of rounds. At the start of round n, where
n ∈ {1, 2, · · · , N}, the algorithm observes T unlabeled in-
stances, x(n) = {x(n)

1 ,x
(n)
2 , · · · ,x(n)

T }, where each instance
x
(n)
i ∈ ℜd is a d-dimensional vector of predictor variables,

and T is the number of instances to be predicted in each
round. The algorithm then predicts the target value f(xi)
for each unlabeled instance. We consider the prediction of
each instance as a separate learning task. Our goal is to learn
a set of prediction functions for the T tasks such that their
cumulative loss over the N rounds is minimized. Similar to
previous works [34], [35], we consider only linear prediction

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 4

functions of the form f(x) = wTx, where w ∈ ℜd is the
parameter vector. Extending the formulation to non-linear
models is beyond the scope of this paper.

From an ensemble forecasting perspective, each online
round corresponds to the scenario when a new set of fore-
casts is generated, as shown in Fig. 1. After N rounds, there
are N sets of forecasts generated. Each set of forecasts is
generated by d ensemble members, which collectively form
the set of predictor variables for our online learning task.
Note that each ensemble member produces a time series of
length T , which is equivalent to the number of instances
(tasks) that must be predicted in each online round. Since
the prediction tasks are related due to the inherent temporal
autocorrelation of the time series, we cast the ensemble
forecasting task into a multi-task learning problem. The
number of prediction tasks in each round is equal to the
forecast duration, T , and the number of online rounds is
equal to the number of forecast sets, N .

As can be seen from Fig. 1, the number of observed
values available to update the predictions at the end of each
round varies from one forecast set to another. Let forecast N
be the most recent set of forecasts generated for the time
window [tN+1, tN+2, · · · , tN+T]. There are no observed
values available for the given time window. However, the
forecast set N − 1, which was previously generated for
the time window [tN , tN+1, · · · , tN+T−1] now has a new
observed value for the time tN . Similarly, the number of
observed values for the forecast set N − 2 increases from 1
to 2. More generally, let y(n)

m = {y(n)1 , y
(n)
2 , · · · , y(n)mn} denote

the set of observed values available for the forecast set m in
round n, where m ≤ n. If T is the forecast duration, then the
number of observed values available to update the forecast
set m in round n is given by mn = min(n − m,T). This
partially observed data scenario distinguishes our work
from other online multi-task learning formulations.

Example 1. Consider the scenario shown in Fig. 1. Assume the
most recent forecast set N was generated on September 12, 2011.
The forecast set N − 1, which was generated on September 7,
2011 for predicting a 40-day time window from September 12 to
October 17, will have a new observed value for September 12. The
forecast set N − 2, which was generated on September 2, 2011 for
predicting the time series from September 7 to October 12, now
has two observed values, for September 7 and 12, respectively.
If the forecast duration is T , then all previous forecast sets from
Forecast 1 to Forecast N−T will have complete observation values
for their entire data sets.

Let f (n−1) be the model obtained at the end of round n−
1. After round n, a new labeled data D(n)

n−1 = (x(n−1),y
(n)
n−1).

is available to update f (n−1), where y
(n)
n−1 includes the latest

observed value for the time tn. The number of labeled
examples in D(n−2), D(n−3), · · · D(n−T+1) also increases
by 1 in round n since all of them involves a prediction
for the time step tn. It is therefore insufficient to gen-
erate f (n) directly from f (n−1) since the models f (n−1),
f (n−2), · · · f (n−T) should also be revised given their ex-
panded labeled data sets. Thus, we employ the following
online learning with restart strategy to update our models.
In round n, we first backtrack to round n − T and revise
f (n−T) with the expanded labeled data D(n−T) to obtain a

new model f (n−T+1). We then update f (n−T+1) with the
expanded labeled data D(n−T+1) to obtain f (n−T+2) and
repeat the procedure until f (n) is obtained. To implement
this strategy, the algorithm only needs to maintain two sets
of weights, w(n−1) and w(n−T−1). At the start of round n,
the algorithm makes it prediction using w(n−1). When D(n)

is available, the algorithm will backtrack and progressively
update the models starting with w(n−T−1), which was the
last set of weights trained from a completely labeled data
set, until w(n) is obtained.

4 ONLINE REGULARIZED MULTI-TASK
REGRESSION (ORION)

This section presents the ORION framework for the ϵ-
insensitive loss function. An extension of the framework to
the quantile loss function is given in Section 5.

4.1 ORION for ϵ-insensitive Loss Function

Although our framework requires restarting the online
learning process at round n − T to deal with the partially
observed data problem, the update formula and optimiza-
tion step in each round are identical. Specifically, in round
n, the ORION framework assumes that the weights are co-
regularized as follows:

w
(n)
t = w

(n)
0 + v

(n)
t , ∀t ∈ {1, 2, · · · , T}.

In other words, the prediction functions for all T tasks share
a common term w0 and a task-specific weight vt, which is
expected to be small when the predictions are correlated.
To estimate the weights, we employ the following objective
function, which extends the Passive Aggressive online algo-
rithm given in [32] to a multi-task learning setting with an
ϵ-insensitive loss function:

arg min
w0,{vt}

1

2

T∑
t=2

||wt −wt−1||22 +
µ

2

T∑
t=1

||vt||22 (1)

+
λ

2
||w0 −w

(n−1)
0 ||22 +

β

2

T∑
t=1

||vt − v
(n−1)
t ||22

s.t. ∀t ≤ mn : |wT
t x

(n)
t − y

(n)
t | ≤ ϵ

∀t ∈ {1, 2, · · · , T} : wt = w0 + vt

µ, λ, β and ϵ ≥ 0

where mn is the number of labeled observations, x(n)
t is a

vector of predictor variables for task t in the n-th round,
and y

(n)
t is the target value. For brevity, we have omitted

the superscript n in our notations for vt, wt, and w0. Since
wt − wt−1 = vt − vt−1, Equation (1) can be simplified as
follows:

arg min
w0,V

1

2
Tr

[
VT (L+ µIT)V)

]
(2)

+
λ

2
||w0 −w

(n−1)
0 ||22 +

β

2
||V −V(n−1)||2F

s.t. ∀t ≤ mn, |wT
t x

(n)
t − y

(n)
t | ≤ ϵ

∀t ∈ {1, 2, · · · , T}, wt = w0 + vt

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 5

where V = [vT
1 ;v

T
2 ; · · · ;vT

T] is a T × d-dimensional matrix,
IT is a T × T identity matrix, Tr[·] is the trace operator and

Li,j =

1 if i = j = 1 or i = j = T
2 if i = j ̸= 1 and i = j ̸= T
−1 if i = j + 1 or i = j − 1
0 otherwise

is a graph Laplacian capturing the relationships among the
T tasks. The Lagrange formulation is given by

L(w0,V,τ) =
1

2
Tr(VT (L+ µIT)V)

+
λ

2
||w0 −w

(n−1)
0 ||22 +

β

2
||V −V(n−1)||2F

+
∑

t∈O(n)

τt(|wT
t x

(n)
t − y

(n)
t | − ϵ)

where O(n) = {t|t ≤ mn and |wT
t x

(n)
t − y

(n)
t | > ϵ} is the

feasible set and τ = {τt} is the set of Lagrangian multipliers
such that τt ≥ 0 for all t ∈ O(n) and τt = 0 for all t /∈
O(n). In the next subsection, we present the solution for this
optimization problem.

4.2 Optimization
To simplify the notation, we first vectorize the matrix V and
concatenate it with w0. Let z = [w0;v1; ...,vT] denote the
resulting weight vector to be solved. The Lagrangian can
now be written into the following form:

L(z,τ) =
1

2
(z− z(n−1))TR(z− z(n−1)) +

1

2
zTQz

+

[
(zT X̃(n) − y(n)T)S− ϵ1T

]
Pτ (3)

where X̃(n), R, Q, P, and S are defined in Table 1.

TABLE 1: Notations used in Equation (3)
Notation Definition

0d a d-dimensional column vector of zeros
0d×T a d× T matrix of zeros
Id a d× d identity matrix

A⊗B Kronecker product between matrices A and B

X̃(n)

x
(n)
1 x

(n)
2 · · · x

(n)
T

x
(n)
1 0d · · · 0d

0d x
(n)
2 · · · 0d

...
...

...
...

0d 0d · · · x
(n)
T

y(n) [y

(n)
1 ; y

(n)
2 ; · · · ; y(n)

mn ;0(T−mn)]

P Pi,j =

{
1 if i = j and i ∈ O(n)

0 otherwise

S Si,j =

{
sign(w

(n)
i

T
x
(n)
i − y

(n)
i) if i = j

0 otherwise
τ [τ1; ...; τT]

R

[
λId 0d×Td

0Td×d βITd

]
Q

[
0d×d 0d×Td

0Td×d (L+ µIT)⊗ Id

]
Taking the partial derivative of L with respect to z and

setting it to zero yields the following

∂L(z, τ)
∂z

= R(z− z(n−1)) +Qz+ X̃(n)SPτ = 0

z = M(Rz(n−1) − X̃(n)SPτ) (4)

where M = (R+Q)−1. It can be easily shown that R+Q is
a positive definite matrix, which means it is invertible and
its inverse is also positive definite.

Plugging z in Equation (4) back into Equation (3) leads
to the following equation after simplification

L(τ)X̃(n)SPτ = −1

2
τT X̃

(n)T
PS MT X̃

(n)
PSτ+ ℓTn (ẑ

(n−1))τ

+ constant (5)

where

X̃
(n)
PS = X̃(n)SP

ℓTn (ẑ
(n−1)) =

[
(ẑ(n−1)T X̃(n) − y(n)T)S− ϵ1T

]
P

ẑ(n−1) = MTRT z(n−1) (6)

Note that P is a diagonal matrix, whose diagonal ele-
ment Pt,t is zero if t /∈ O(n). In other words, if the target
value for task t is either unavailable or predicted correctly
(within the ϵ-insensitive bound), all the elements in the t-
th column of X̃

(n)
PS become 0, and the corresponding t-th

element in ℓTn (ẑ
(n−1)) is also 0. Thus, τt for t /∈ O(n) has

no impact on Equation (5) and can be set to zero. In the
following derivation, we assume the rows and columns
corresponding to all the tasks t /∈ O(n) in τ , X̃

(n)
PS , and

ℓTn (ẑ
(n−1)) have been removed.

Taking the partial derivative of the “reduced” La-
grangian with respect to τ and setting it to zero yields

∂L
∂τ

= −X̃
(n)T
PS MT X̃

(n)
PSτ+ ℓn(ẑ

(n−1)) = 0

τ =

[
X̃

(n)T
PS MT X̃

(n)
PS

]−1

ℓn(ẑ
(n−1)) (7)

There are several points worth noting regarding the
update formula for z and its learning rate τ. First, note that
Equation (7) is only applicable to tasks that belong to O(n).
The columns in X̃PS for t /∈ O(n) must be removed before
calculating τ. Otherwise, the matrix X̃

(n)T
PS MT X̃

(n)
PS is not

invertible. For t /∈ O(n), we set τt = 0 before calculating z.
Second, even when τt = 0, the corresponding weight for vt

may still change due to the first term of Equation (4). This
distinguishes our approach from other online algorithms,
where a zero learning rate implies the weights will not
change in the next round. Finally, our formula for τ has a
similar form as the learning rate for the single-task learning
given in [32], τn = ℓn/||xn||2. The main difference is that
the τ for multi-task learning must take into account the task
relatedness in both ℓn and the inverse of X̃(n)T

PS MT X̃
(n)
PS .

4.3 Algorithm
A summary of the ORION framework for ϵ-insensitive loss
function is given in Algorithm 1. The algorithm proceeds
in a sequence of rounds. During round n, the algorithm
receives the instances x(n)

t for each task t ∈ {1, .., T}. Using
the online learning with restart strategy, it will backtrack
to round n − T and update the set of labeled observations
to include the most recent target value. After computing
the loss for each task, it identifies the set of tasks for
which the loss exceeds the ϵ-bound. The weights associated
with the tasks will be updated using the formula given in

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 6

Equation (4). Note that τt is set to zero for tasks that do not
belong to O(n). In each round, the algorithm only needs
to maintain two sets of weights, z(n−T) and z(n), along
with the predictor variables {x(n−T),x(n−T+1), · · · ,x(n)}
and the observed target values {y(n−T), y(n−T+1), y(n)}. Its
storage complexity is therefore T times the complexity of
single-task learning. Theoretical analysis of the algorithm is
given in the Appendix section.

4.3.1 Time complexity
In this section, we analyze the time complexity of the ORI-
ON framework for the ϵ-insensitive loss function in terms of
the number of online rounds N , the number of tasks T and
the number of features d. For ensemble forecasting, T refers
to the forecast duration and d is the number of ensemble
members (see Fig. 1). Each round requires calculations of
Equations (4) and (7). For Equation (7), X̃(n)

PS needs to be
computed first, which requires O(T 3d) floating point oper-
ations (flops). Calculating X̃

(n)T
PS MT X̃

(n)
PS requires O(T 3d2)

flops and its inverse will take O(T 3) flops. According to
Equation (6), calculating both ẑ(n−1) and ℓn(ẑ

(n−1)) will
require O(T 3d) flops. The time complexity for calculating
Equation (7) is O(T 3d2) whereas the time complexity for
Equation (4) is O(T 3d+T 2d2). Therefore, the model update
for each task requires O(T 3d2) flops. Since there are T tasks,
the time complexity for each online round is O(T 4d2). There
are other computations that need to be performed only
once throughout the entire online learning process, which
is the calculation for M = (R+Q)−1, whose complexity is
O(T 3d3). Thus, after N rounds, the overall time complexity
is O(N(T 4d2 + T 3d3)), which is linear in the number of
rounds (similar to other online learning algorithms). The
number of tasks T and number of features d are domain-
dependent, though they are both generally much smaller
than N .

Input: µ, λ, β, ϵ = 0.001 ;
Initialize: w0 = 0d; ∀t ∈ {1, ..., T},vt = 0d ;
Compute R and Q using the formula in Table 1 ;
for n = 2, · · · , N do

Receive x
(n)
1 ,x

(n)
2 , ...,x

(n)
T ;

for m = n− T, · · · , n do
Set mn = n−m ;
for t = 1, 2, · · · , T do

Predict ŷ(m)
t =

[
w

(m−1)
0 + v

(m−1)
t

]T
x
(m)
t ;

end
Update y

(n)
m = y

(n−1)
m ∪ {y(n)} ;

Set On = {t|t ≤ mn; |w(m)T
t x

(m)
t − y

(n)
m,t| > ϵ} ;

Compute τ using Equation (7) and set τt = 0
when t /∈ O(n) ;
Update z(m) using Equation (4) ;

end
end
Algorithm 1: Pseudocode for ORION-ϵ Algorithm

4.4 Theoretical Analysis of ORION-ϵ
This section presents theoretical analysis on the average loss
bound of the ORION-ϵ algorithm.

Lemma 1. Let UΛUT be an eigendecomposition of the real
symmetric matrix R−1Q, where U is an orthogonal matrix and
Λ is a diagonal matrix containing the eigenvalues of R−1Q. The
eigendecomposition of MR is given by U(I+Λ)−1UT .

Proof. First, we can write

MR = (R+Q)−1R = (I+R−1Q)−1 = (I+UΛUT)−1

Since U is an orthogonal matrix, UUT = I. Hence

MR = (UUT +UΛUT)−1 = U(I+Λ)−1UT

Lemma 2. ∥MR∥2 = 1, where ∥·∥2 denote the induced 2-norm
of a matrix.

Proof. The induced 2-norm of a matrix A is defined as

∥A∥2 = max
∥x∥2=1

∥Ax∥2 =
√
λmax,

where λmax is the largest eigenvalue of the matrix ATA.
Since

R−1Q =

[
0d×d 0d×Td

0Td×d
1
β (L+ µIT)⊗ Id

]
the determinant |R−1Q| = 0 because the matrix contains
rows and columns of all zeros. In addition, it can be shown
that R−1Q is a positive semi-definite matrix since it is
diagonally dominant, which means all of its eigenvalues
must be non-negative. Since |R−1Q| =

∏
k λk = 0, this

implies that the smallest eigenvalue of R−1Q is λmin = 0.
Following Lemma 1, the largest eigenvalue of MR is

(1 + λmin)
−1 = 1. Finally, given that (MR)TMR = U(I+

Λ)−2U, the largest eigenvalue of (MR)TMR must also be
equal to 1. Thus, ∥MR∥2 = 1.

Lemma 3. ∥I−MR∥2 = 1− 1
1+λmax

≤ 1, where ∥ · ∥2 denote
the induced 2-norm of a matrix and λmax ≥ 0 is the largest
eigenvalue of R−1Q.

Proof. Following Lemma 1, it is easy to see that I −MR =
U[I−(I+Λ)−1]UT . Thus, the largest eigenvalue of I−MR
is 1− 1

1+λmax
, which is the induced 2-norm of the matrix.

Theorem 1. Let z(1), z(2), · · · , z(n) be a sequence of weights
learned using the ORION-ϵ algorithm. Using the notations given
in Table 1, the following bound holds for any u ∈ ℜ(T+1)d.

1

N

N∑
n

||ℓn(MTMRz(n))||

≤ 1

N

N∑
n

∥ℓTn (MTu)∥+ 1

2C

[
∥u∥2

N
+ ∥u∥Ψ+ C2ρ2

]
,

where ||τ|| ≤ C , ∥z(n)∥ ≤ Ψ, and ∥MX̃(n)SP∥ ≤ ρ.

Proof: Define ∆n = ∥z(n) − u∥2 − ∥z(n+1) − u∥2. We
will derive the relative loss bound by finding the upper and
lower bound of

∑N
n=1 ∆n. For the upper bound,

N∑
n=1

∆n =
N∑

n=1

∥z(n) − u∥2 − ∥z(n+1) − u∥2

= ∥z(1) − u∥2 − ∥z(N+1) − u∥2 (8)

= ∥u||2 − ∥z(N+1) − u∥2

≤ ∥u∥2

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 7

where z(1) = 0. Next, we derive the lower bound of ∆n.

∆n = ∥z(n) − u∥2 − ∥z(n+1) − u∥2

= ∥z(n) − u∥2 − ∥MRz(n) −MX̃(n)SPτ− u∥2

= ∥z(n) − u∥2 − ∥MRz(n) − u∥2 − ∥MX̃(n)SPτ∥2

+ 2(MRz(n) − u)TMX̃(n)SPτ

A lower bound on the first two terms is given as follows

∥z(n) − u∥2 − ∥MRz(n) − u∥2

= ∥z(n)∥2 − ∥MRz(n)∥2 − 2uT (I−MR)z

≥ ∥z(n)∥2 − ∥MR∥2∥z(n)∥2 − 2∥u∥∥I−MR∥∥z(n)∥
≥ −2∥u∥∥z(n)∥

where we have applied Lemmas 2 and 3 and used the fact
that ∥Ax∥2 ≤ ∥A∥2∥x∥2 and uTv ≤ ∥u∥∥v∥. Furthermore,

z(n)
T
RTMTMX̃(n)SPτ− uTMX̃(n)SP

= [(z(n)
T
RTMTMX̃(n) − y(n)T)S− ϵ1T]Pτ−

[(uTMX̃(n) − y(n)T)S− ϵ1T]Pτ

≥ ℓTn (M
TMRz(n))τ− ℓTn (M

Tu)τ

Putting them together, we have

∥u∥2 ≥
N∑

n=1

∆n

≥ −2∥u∥
N∑
n

∥z(n)∥ −
N∑
n

∥MX̃(n)SP∥2∥τ∥2

+ 2

N∑
n

ℓTn (M
TMRz(n))τ− 2

N∑
n

ℓTn (M
Tu)τ

Assuming ||τ|| ≤ C , ∥z(n)∥ ≤ Ψ, ∥MX̃(n)SP∥ ≤ ρ, and
after re-arranging the equation, we obtain

1

N

N∑
n

||ℓn(MTMRz(n))||

≤ 1

N

N∑
n

∥ℓTn (MTu)∥+ 1

2C

[
∥u∥2

N
+ ∥u∥Ψ+ C2ρ2

]

5 ONLINE REGULARIZED MULTI-TASK QUANTILE
REGRESSION (ORION-QR)
Predicting extreme value events are important for appli-
cations such as weather and hydrological forecasting due
to their adverse impacts on both human and natural sys-
tems. Unfortunately, most of the existing work on multi-
task learning have considered only squared or hinge loss
functions, and thus, are not suitable for extreme value
prediction. In this section, we describe an extension of the
ORION framework to predict extreme values in a time
series by incorporating a quantile loss function. To describe
the approach, we first present the quantile regression (QR)
method [41] and introduce the quantile loss function.

QR is a statistical method for estimating the conditional
quantiles of a target variable as a function of its predictor
variables. By focusing on the upper or lower quantiles of

the distribution, this may help bias the algorithm toward-
s learning the extreme values of the target distribution.
Specifically, QR is designed to improve the estimate of the
τth conditional quantile of the prediction by minimizing
the following sum of asymmetrically weighted absolute
residuals:
n∑

i=1

ρτ(yi − xT
i β), where ρτ(u) =

{
τu u > 0
(τ− 1)u u ≤ 0

The τth quantile of a random variable Y is defined as

QY (τ) = F−1(τ) = inf{y : FY (y) ≥ τ}

The quantile loss function is asymmetric around τ, i.e., it
incurs a higher penalty if the predicted function underesti-
mates the true value of the target variable and lower penalty
if it overestimates the true value. By choosing τ close to
1, quantile regression is biased towards predicting higher
values of the time series. In the case when τ = 0.5, the
solution reduces to the conditional median of the target
distribution. The preceding objective function is equivalent
to solving the following linear programming problem:

min
p,q

τ1T
Tp+ (1− τ)1T

Tq

s.t. y −Xβ = p− q

p ≥ 0,q ≥ 0

The ORION framework for quantile loss function is
designed to solve the following optimization problem.

min
p,q,w0,V

τ1T
Tp+ (1− τ)1T

Tq

+
1

2
Tr(VT (L+ µIT)V)

+
λ

2
||w0 −w

(n)
0 ||22 +

β

2
||V −V(n−1)||2F

s.t. ∀t ≤ mn,y
(n)
t −wT

t x
(n)
t = pt − qt

∀t,wt = w0 + vt

p ≥ 0,q ≥ 0

Compared to ORION-ϵ, there are two additional parame-
ters, p and q, that must be estimated from the data. With
this formulation, the prediction function is trained to fit
the conditional quantiles and to ensure smoothness of the
model parameters across the different tasks. The latter is
attained by using a graph Laplacian to encode the task
relationships. Unlike the original QR formulation, ORION-
QR requires solving a quadratic programming problem. We
employed the CVX software [42] to estimate the parameters
using τ = 0.95 to detect extreme (high) value events.

6 EXPERIMENTAL EVALUATION

The proposed framework was applied to the soil moisture
ensemble forecasting problem. The soil moisture forecasts
were obtained from a seasonal hydrological prediction sys-
tem for 12 major river basins in North America. 33 ensemble
member forecasts were generated by running the model
multiple times with different initial conditions. The data
correspond to 40-day forecasts generated every 5 days for
the time period between April, 2011 and September, 2011.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 8

The number of learning tasks to be predicted in each forecast
set is T = 8.

The number of forecast sets in the data set is N = 33,
which is equivalent to the number of online rounds. Since
the model parameters were initialized to zero, the initial
forecasts were poor until the model has been sufficiently
trained. We use the first 23 forecast sets as “training data”
and report the performance based on the predictions gener-
ated for the last 10 forecast sets (“test data”). We evaluated
the performance of the different methods in terms of their
mean absolute error (MAE) on the test data:

MAE =
1

80

33∑
n=24

8∑
t=1

|y(n)t − ŷ
(n)
t |,

where ŷ is the vector of predicted values.

6.1 Performance Comparison for ORION-ϵ

We compared the performance of ORION-ϵ against the
following baseline methods.

1) Ensemble Median (EM): This is an unbiased aggre-
gation of the ensemble member forecasts.

2) Passive-Aggresive (PA) Algorithm [32]: This single-
task learning method assumes there is only one set
of weights w to be estimated. Starting from the
initial weights w = 0, we update the weights in
each round as follows (from the first to the last task):

w(n) = w(n−1) + sign(y(n) − ŷ(n))τx(n)

where τ = ℓn/∥x(n)∥22, and ℓ is the ϵ-insensitive loss.
3) Tracking Climate Models (TCM) [43]: This method

uses a Hidden Markov Model to track the cur-
rent best ensemble member. Unlike ORION-ϵ, the
weights estimated by TCM range between 0 and
1, which means the aggregated forecast always fall
within the range of the ensemble member forecasts.
Since the method is designed for single-task learn-
ing, we modify its implementation to handle T
instances in each round. Instead of using squared
error between the observed and predicted target
values, the loss is computed based on the average
squared error over mn instances.

4) Online Multi-task Learning with a Shared
Loss(OMTLSL) [34]: This is a modified implemen-
tation of the approach given in [34], which was orig-
inally proposed for the hinge loss function. Here, we
use the ϵ-insensitive loss function for our regression
problem and ignore the use of slack variables. The
modified objective function is given by:

argmin
wt

1

2

T∑
t=1

∥wt −w
(n−1)
t ∥22

s.t. ∀t ≤ mn, |wT
t x

(n)
t − y

(n)
t | ≤ ϵ

The optimization problem can be solved using a
similar technique as that for ORION-ϵ.

5) Linear Algorithms for Online Multi-task Learn-
ing(LAOM) [35]: The original method was pro-
posed for multi-task classification. We modify the

TABLE 2: Comparison of mean absolute error (MAE) for
ORION-ϵ against baseline methods on soil moisture data

O
R

IO
N

-ϵ

EM PA TC
M

O
M

T
LS

L

LA
O

M

arkansusred 2.740 4.189 3.788 3.659 5.423 2.767
calinevada 3.398 4.919 4.281 4.265 4.422 4.257
colorado 4.362 5.934 5.741 5.634 6.068 5.674
columbia 4.411 6.000 6.439 6.475 6.225 5.370
lowermiss 9.891 12.023 11.639 10.671 14.975 11.951
midatlantic 13.473 24.381 25.140 20.961 23.143 27.507
missouri 3.699 6.029 5.470 6.575 6.913 5.269
northcentral 6.292 8.789 8.700 9.157 10.838 7.298
northeast 7.422 22.040 20.490 19.471 24.877 23.824
ohio 14.535 17.023 15.107 15.021 19.064 16.436
southeast 8.229 8.951 8.778 9.136 10.966 9.158
westgulf 3.790 4.697 4.490 5.689 6.150 4.369

loss function to be squared loss for regression prob-
lem. The default approach given in [35] assumes the
data is only available one task at a time, and thus,
the models are updated one task at a time according
to the task relationship matrix. As a consequence,
the learning process depends on ordering of the
task. ORION-ϵ does not require such an assumption.

For a fair comparison, all the baseline methods adopt
the same online learning with restart strategy (similar to
ORION-ϵ) to deal with the partially observed data.

Table 2 compares the results of the different methods.
As can be seen from the table, ORION-ϵ works better than
the baseline methods on all 12 data sets. In particular, it
outperforms OMTLSL, which is a state-of-the-art online
multi-task learning algorithm, on all the data sets. Unlike
OMTLSL, ORION-ϵ enforces the constraint wt = w0 + vt,
which helps to improve the performance of the ensemble
forecasting task. As will be shown in Table 5, the improve-
ment is still observed even when the task relationship is
removed (i.e., comparing OMTLSL against ORION-ϵ-NR).
Comparing ORION-ϵ against LAOM, the results suggest
the benefit of updating the multiple tasks simultaneously
instead of updating them one task at a time.

As further evidence, Fig. 3 shows the predicted time
series for ORION-ϵ and the Ensemble Median (EM) method
on the northeast data set. The first five figures are from the
training set and the remaining ten figures are from the test
set. Initially, the time series predicted by ORION-ϵ is similar
to EM (see Fig. 3a to 3c). As more data becomes available,
the predictions by ORION-ϵ is closer to observation data
than EM (Fig. 3d to 3j). In Fig. 3k, there appears to be a
sudden shift that causes the performance of ORION-ϵ to
degrade significantly. However, after one update, ORION-ϵ
recovers from the mistake and its prediction follows closely
the observation data again (Fig. 3l). Fig. 4 shows the absolute
error of ORION-ϵ and EM during the last 15 rounds of
the training data and the 10 rounds in test data, for both
Northeast and Midatlantic data. Although the performance
of ORION-ϵ is slightly worse than EM at the beginning, after
sufficient training, ORION-ϵ appears to perform significant-
ly better than EM.

We also compared the runtime of ORION against other
baseline methods. The total runtime as well as average
runtime per round for the Northeast data set is shown in
Table 3. ORION is relatively slower than other baselines,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 9

10

20

30

40

50

60

70

80

90

100

2011/5/15

2011/5/20

2011/5/25

2011/5/30

2011/6/4

2011/6/9

2011/6/14

2011/6/19

2011/6/24

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(a) Forecasts for 05/15/2011

10

20

30

40

50

60

70

80

90

100

2011/6/9

2011/6/14

2011/6/19

2011/6/24

2011/6/29

2011/7/4

2011/7/9

2011/7/14

2011/7/19

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(b) Forecasts for 06/09/2011

10

20

30

40

50

60

70

80

90

100

2011/7/14

2011/7/19

2011/7/24

2011/7/29

2011/8/3

2011/8/8

2011/8/13

2011/8/18

2011/8/23

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(c) Forecasts for 07/14/2011

10

20

30

40

50

60

70

80

90

100

2011/8/3

2011/8/8

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(d) Forecasts for 08/03/2011

10

20

30

40

50

60

70

80

90

100

2011/8/8

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(e) Forecasts for 08/08/2011

10

20

30

40

50

60

70

80

90

100

2011/8/13

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(f) Forecasts for 08/13/2011

10

20

30

40

50

60

70

80

90

100

2011/8/18

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(g) Forecasts for 08/18/2011

10

20

30

40

50

60

70

80

90

100

2011/8/23

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(h) Forecasts for 08/23/2011

10

20

30

40

50

60

70

80

90

100

2011/8/28

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(i) Forecasts for 08/28/2011

10

20

30

40

50

60

70

80

90

100

2011/9/2

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(j) Forecasts for 09/02/2011

10

20

30

40

50

60

70

80

90

100

2011/9/7

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

2011/10/17

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(k) Forecasts for 09/07/2011

10

20

30

40

50

60

70

80

90

100

2011/9/12

2011/9/17

2011/9/22

2011/9/27

2011/10/2

2011/10/7

2011/10/12

2011/10/17

2011/10/22

Ensemble Members
ORION-ǫ
Observations
Ensemble Median

(l) Forecasts for 09/12/2011

Fig. 3: Forecasts on Dataset Northeast for ORION-ϵ. Fig. 3a - 3c are results from the training set and Fig. 3d - 3l are results
from the test set. Note that in the early stage of the online learning process, ORION-ϵ performs similar to Ensemble Median
(see Fig. 3a - 3b), and ORION-ϵ starts to follow the observation from Fig. 3c.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 10

2011/5/15 2011/6/4 2011/6/29 2011/7/14 2011/8/18
0

5

10

15

20

25

30

35

40

45

50

A
bs

ol
ut

e
E

rr
or

ORION−ε
Ensemble Median

(a) Northeast Data

2011/5/15 2011/6/4 2011/6/29 2011/7/14 2011/8/18
0

5

10

15

20

25

30

35

40

45

50

A
bs

ol
ut

e
E

rr
or

ORION−ε
Ensemble Median

(b) Mid-Atlantic Data

Fig. 4: Mean absolute error for ORION-ϵ and Ensemble
Median on the Northeast and Midatlantic data.

TABLE 3: Comparison of runtime (in seconds) on the North-
east data set.

ORION PA TCM OMTLSL LAOM
Runtime

per Round 0.0430 0.0005 0.0070 0.0013 0.0014

Total
Runtime 1.0909 0.0208 0.1252 0.0647 0.0606

which is not surprising since it has to backtrack and revise
some the older models in each round unlike other methods.
Nevertheless, the additional overhead, which is less than 50
ms for each update round, is reasonable for many ensemble
forecasting problems that require only a one-time daily
update of their models. It is therefore an acceptable tradeoff
to achieve the accuracy improvement shown in Table 2.

6.2 ORION with Quantile Regression (ORION-QR)

To evaluate the performance of the ORION framework with
quantile loss function, the observation data were initially
preprocessed to identify the forecast periods when the soil
moisture value is extremely high, i.e., more than 1.64 s-
tandard deviations away from the mean. Non-extremes are
defined as those values located within the 90% confidence
interval of the mean. Only 5 of the 12 data sets contain

TABLE 4: Comparison of F1 measure for predicting occur-
rence of extreme events.

ORION-QR EM ORION-ϵ QR OQR
arkansusred 0.465 0.4167 0.200 0.500 0.500

colorado 0.593 0.148 0.500 0.406 0.3030
midatlantic 0.500 0.3019 0.500 0.387 0.275
southeast 0.444 0.3077 0.250 0 0.286
westgulf 0.598 0.6122 0.451 0.568 0.625

extreme events in the test period. The number of extreme
events during the test period for the five data sets are as
follows: arkansusred (14), colorado (14), midatlantic (44),
southeast (6), and westgulf (41). We report our experimen-
tal results for these data sets only, comparing ORION-QR
against EM, ORION-ϵ, and the following two baselines:

1) Quantile Regression (QR): This is the original QR
method used in a batch mode. It assumes all the
tasks share the same set of weights w.

2) Online Quantile Regression (OQR): This is a vari-
ant of the PA [32] algorithm using a quantile loss
function. The objective function is modified as fol-
lows:

min
p,q,w

τ1T
Tp+ (1− τ)1T

Tq

+
λ

2
∥w −w(n−1)∥22 (9)

s.t. ∀t,y(n)
t −wTx

(n)
t = pt − qt

p ≥ 0,q ≥ 0

which can be solved using standard quadratic pro-
gramming solvers such as CVX.

For this experiment, we are interested in the predictions
of extreme events. A predicted event is a true positive (TP)
if it is a real event and a false positive (FP) if it does not cor-
respond to a real event. A false negative (FN) corresponds
to a real event that was not detected by the algorithm. We
use the following F1-measure as our evaluation metric:

F1 =
2 TP

2 TP + FP + FN

Table 4 shows that ORION-QR outperforms both EM
and ORION-ϵ in 4 out of 5 data sets. The latter suggests
quantile loss is more effective than ϵ-insensitive loss when
dealing with extreme value prediction. Compared to single-
task learning methods, ORION-QR outperforms QR in 4
out of 5 data sets and OQR in 3 out of 5 data sets. Fur-
thermore, there is no significant difference when comparing
the number of data sets in which the batch version of QR
outperforms its online version, OQR.

For the southeast dataset, the F1-measure for QR is zero,
which suggests that the method fails to correctly predict
extreme events in the test data. This is because there are
only 6 extreme events in the test period of southeast dataset,
which makes it a hard prediction problem. In contrast, the
frequency of extreme events for other datasets is at least 14.
The presence of concept drift in the time series data also
makes QR less effective compared to OQR. While OQR per-
forms better on the southeast dataset, it is still significantly
worse than our proposed ORION-QR algorithm.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 11

6.3 Sensitivity Analysis

This section analyzes the sensitivity of the three input pa-
rameters of the ORION framework.1 Although the experi-
mental results shown here are for the northeast data set, a
similar behavior was observed in other data sets. For each
experiment, we vary the value of one parameter and fix the
values of the remaining two.

The parameter µ controls sparsity of the weights for
vt. Note that µ must be non-negative to ensure the matrix
L+ µIT is positive semi-definite. Fig. 5(a) shows that MAE
improves as µ increases. As long as µ is sufficiently large
(> 50), its MAE becomes stable. This result is not surprising
since the prediction tasks are highly correlated. Therefore,
the weights for vt are expected to be small.

The parameters β and λ affect how much information
should be retained from previous rounds. Since the weights
for vt are small, the results are not that sensitive to changes
in β (see Fig. 5(a)). The results are more sensitive to choice
of λ. If λ is too small, w0 deviates significantly from its
previous value. Conversely, if λ is set too large, the variation
in w0 becomes too slow and the algorithm requires more
training examples in order to converge. In practice, λ can be
set based on its performance on the training data.

6.4 Variations of ORION-ϵ Framework

The ORION framework uses two types of information to
update its model parameters. First, it uses the λ and β
regularizers to control the amount of information retained
from previous rounds. Second, it relies on the Q matrix to
control the amount on information shared among the tasks.

We investigate two variations of the ORION-ϵ frame-
work. We first consider the case when β = 0, which implies
that the weight vectors vt are independent of their values in
the previous round.2 We denote the approach as ORION-
ϵ-β. Experimental results given in Table 5 showed that
ORION-ϵ outperforms ORION-ϵ-β in 9 out of 12 data sets.
However, the difference is not that significant except for 3
of 12 the data sets. The second variation of our framework
removes the task relationship by setting Q = 0. This
approach is denoted as ORION-ϵ-NR. Based on the results
given in Table 5, ORION-ϵ outperforms ORION-ϵ-NR in 8
out of 12 datasets, with substantial improvements in at least
4 of them. This shows the value of incorporating the task
relationship into the ORION-ϵ framework.

7 CONCLUSION

This paper presents an online regularized multi-task regres-
sion framework for ensemble forecasting tasks. Our frame-
work is unique in that it uses an online learning with restart
strategy to update its models. The proposed framework is
also flexible in that it can accommodate both ϵ-insensitive
and quantile loss functions. Experimental results confirm
the superiority of the proposed framework compared to
several baseline methods.

1. Similar to other works, ϵ is typically fixed to a small number. So
we set ϵ = 10−3 in all our experiments.

2. Setting λ = 0 makes R + Q becomes a singular matrix. This
situation is not considered in this study.

TABLE 5: Comparison of mean absolute error (MAE) for
different variations of ORION-ϵ framework

ORION-ϵ ORION-ϵ-NR ORION-ϵ-β
arkansusred 2.740 3.937 2.740
calinevada 3.398 4.781 3.390
colorado 4.362 4.599 4.410
columbia 4.411 4.278 5.156
lowermiss 9.891 10.038 12.047
midatlantic 13.473 13.809 13.527

missouri 3.699 3.370 5.049
northcentral 6.292 6.163 6.475

northeast 7.422 7.814 7.427
ohio 14.535 14.463 14.987

southeast 8.229 9.583 8.232
westgulf 3.790 5.002 3.780

ACKNOWLEDGMENTS
The research is partially supported by NOAA Climate Program
office through grant NA12OAR4310081, NASA Terrestrial Hy-
drology Program through grant NNX13AI44G, and Office of
Naval Research through grant N00014-14-1-0631.

REFERENCES

[1] C. Tebaldi and R. Knutti, “The use of the multi-model ensemble in
probabilistic climate projections,” Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 365, no. 1857, pp. 2053–2075, 2007.

[2] P. Cantelaube and J.-M. Terres, “Seasonal weather forecasts for
crop yield modeling in europe,” Tellus A, vol. 57, no. 3, pp. 476–
487, 2005.

[3] M. B. Araujo and M. New, “Ensemble forecasting of species
distributions,” Trends in Ecology & Evolution, vol. 22, no. 1, pp.
42–47, 2007.

[4] L. Luo and E. F. Wood, “Use of bayesian merging techniques in
a multimodel seasonal hydrologic ensemble prediction system for
the eastern united states,” Journal of Hydrometeorology, vol. 9, pp.
866–884, 2008.

[5] M. Leutbecher and T. Palmer, “Ensemble forecasting,” Journal of
Computational Physics, vol. 227, pp. 3515–3539, 2008.

[6] X.-T. Yuan and S. Yan, “Visual classification with multi-task joint
sparse representation,” in CVPR 2010, pp. 3493–3500.

[7] X. Wang, C. Zhang, and Z. Zhang, “Boosted multi-task learning
for face verification with applications to web image and video
search,” in CVPR 2009, pp. 142–149.

[8] J. Zhou, L. Yuan, J. Liu, and J. Ye, “A multi-task learning formula-
tion for predicting disease progression,” in KDD 2011, pp. 814–822.

[9] S. Bickel, J. Bogojeska, T. Lengauer, and T. Scheffer, “Multi-task
learning for hiv therapy screening,” in ICML 2008, pp. 56–63.

[10] X. Ning and G. Karypis, “Multi-task learning for recommender
system.” in ACML 2010, pp. 269–284.

[11] J. Wang, S. C. Hoi, P. Zhao, and Z.-Y. Liu, “Online multi-task
collaborative filtering for on-the-fly recommender systems,” in
RecSys 2013, pp. 237–244.

[12] R. K. Ando and T. Zhang, “A framework for learning predictive
structures from multiple tasks and unlabeled data,” JMLR, vol. 6,
pp. 1817–1853, Dec. 2005.

[13] G. Obozinski, B. Taskar, and M. Jordan, “Joint covariate selection
and joint subspace selection for multiple classification problems,”
Statistics and Computing, vol. 20, no. 2, pp. 231–252, 2010.

[14] J. Xu, P.-N. Tan, and L. Luo, “ORION: Online Regularized multI-
task regressiON and its application to ensemble forecasting,” in
ICDM 2014, pp. 1061–1066.

[15] H. Cheng, P.-N. Tan, G. Jing, and J. Scripps, “Multi-step ahead
time series prediction,” in PAKDD 2006, pp. 765–774.

[16] Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series predic-
tion using multiple-output support vector regression,” Neurocom-
puting, vol. 129, pp. 482 – 493, 2014.

[17] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1,
pp. 41–75, Jul. 1997.

[18] J. Chen, J. Zhou, and J. Ye, “Integrating low-rank and group-sparse
structures for robust multi-task learning,” in KDD 2011, pp. 42–50.

[19] J. Chen, J. Liu, and J. Ye, “Learning incoherent sparse and low-rank
patterns from multiple tasks,” TKDD, vol. 5, no. 4, pp. 22:1–22:31,
2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, XXX 201X 12

µ

0 50 100 150 200

M
A

E

6

8

10

12

(a) Effect of varying µ on MAE

β
0 50 100 150 200

M
A

E

6

8

10

12

(b) Effect of varying β on MAE

λ

0 5 10 15

M
A

E

6

8

10

12

(c) Effect of varying λ on MAE

Fig. 5: Sensitivity Analysis of ORION-ϵ. Fig. 5a shows that ORION-ϵ tends to choose a large value of µ; Fig. 5b shows that
ORION-ϵ is not that sensitive to β; Fig. 5c shows that λ is the parameter to be tuned in practice.

[20] P. Gong, J. Ye, and C. Zhang, “Robust multi-task feature learning,”
in KDD 2012, pp. 895–903.

[21] A. Argyriou, T. Evgeniou, and M. Pontil, “Convex multi-task
feature learning,” Machine Learning, vol. 73, no. 3, pp. 243–272,
Dec. 2008.

[22] Z. Kang, K. Grauman, and F. Sha, “Learning with whom to share
in multi-task feature learning.” in ICML 2011, pp. 521–528.

[23] A. Kumar and H. Daumé III, “Learning task grouping and overlap
in multi-task learning.” in ICML 2012.

[24] J. Chen, L. Tang, J. Liu, and J. Ye, “A convex formulation for
learning a shared predictive structure from multiple tasks,” PAMI,
vol. 35, no. 5, pp. 1025–1038, May 2013.

[25] Y. Zhang and D.-Y. Yeung, “A convex formulation for learning task
relationships in multi-task learning,” in UAI 2010, pp. 733–442.

[26] N. D. Lawrence and J. C. Platt, “Learning to learn with the
informative vector machine,” in ICML 2004, pp. 65–72.

[27] K. Yu, V. Tresp, and A. Schwaighofer, “Learning gaussian process-
es from multiple tasks,” in ICML 2005, pp. 1012–1019.

[28] S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller, “Learning a
meta-level prior for feature relevance from multiple related tasks,”
in ICML 2007, pp. 489–496.

[29] H. Daumé III, “Bayesian multitask learning with latent hierar-
chies,” in UAI 2009, pp. 135–142.

[30] J. Xu, J. Zhou, and P.-N. Tan, “Formula: Factorized multi-task
learning for task discovery in personalized medical models,” in
SDM 2015, pp. 496–504.

[31] N. Littlestone and M. K. Warmuth, “The weighted majority algo-
rithm,” Information and Computation, vol. 108, no. 2, pp. 212–261,
Feb. 1994.

[32] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer,
“Online passive-aggressive algorithms,” JMLR, vol. 7, pp. 551–585,
Dec. 2006.

[33] M. Dredze, K. Crammer, and F. Pereira, “Confidence-weighted
linear classification,” in ICML 2008, pp. 264–271.

[34] O. Dekel, P. M. Long, and Y. Singer, “Online learning of multiple
tasks with a shared loss,” JMLR, vol. 8, pp. 2233–2264, Dec. 2007.

[35] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile, “Linear algorithms
for online multitask classification,” JMLR, vol. 11, pp. 2901–2934,
Dec. 2010.

[36] A. Saha, P. Rai, H. D. III, and S. Venkatasubramanian, “Online
learning of multiple tasks and their relationships.” in AISTATS
2011, pp. 643–651.

[37] G. Li, S. Hoi, K. Chang, W. Liu, and R. Jain, “Collaborative online
multitask learning,” TKDE 2014, vol. 26, pp. 1866–1876, Aug 2014.

[38] T. Evgeniou and M. Pontil, “Regularized multi-task learning,” in
KDD 2004, pp. 109–117.

[39] X. Sun, H. Kashima, and N. Ueda, “Large-scale personalized hu-
man activity recognition using online multitask learning,” TKDE,
vol. 25, pp. 2551–2563, 2013.

[40] A. Agarwal, A. Rakhlin, and P. Bartlett, “Matrix regularization
techniques for online multitask learning,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-2008-
138, Oct 2008. [Online]. Available: http://www.eecs.berkeley.
edu/Pubs/TechRpts/2008/EECS-2008-138.html

[41] R. Koenker, Quantile Regression, ser. Econometric Society Mono-
graphs. Cambridge University Press, 2005.

[42] M. Grant and S. Boyd, “CVX: Matlab software for disciplined
convex programming, version 2.0 beta,” http://cvxr.com/cvx,
Sep. 2013.

[43] C. Monteleoni, G. A. Schmidt, and S. Saroha, “Tracking climate
models,” in NASA Conference on Intelligent Data Understanding
2010, pp. 1–15.

Jianpeng Xu is a Ph.D student in the Depart-
ment of Computer Science and Engineering at
Michigan State University. He received his MS in
Computer Science from Harbin Institute of Tech-
nology in 2010 and BS in Computer Science
from Shandong University in 2007. His research
focuses on geospatio-temporal data mining, rec-
ommendation system, and personalized model-
ing. He has published in top data mining confer-
ences such as KDD, ICDM, and SDM. One of his
papers received the best research paper award

at IEEE BigData 2016.

Pang-Ning Tan is an Associate Professor in
the Department of Computer Science and Engi-
neering at MSU. He received his M.S degree in
Physics and Ph.D. degree in Computer Science
from University of Minnesota. His research inter-
ests span a broad range of data mining problem-
s, from pattern discovery to predictive modeling.
He has published more than 100 peer-reviewed
papers in journals and conference proceedings.

Jiayu Zhou is an Assistant Professor in the De-
partment of Computer Science and Engineering
at Michigan State University. Before joining M-
SU, he was a staff research scientist at Samsung
Research America. Jiayu received his Ph.D. de-
gree in computer science at Arizona State Uni-
versity in 2014. He has a broad research interest
in large-scale machine learning, data mining,
and biomedical informatics. He has published in
top machine learning and data mining venues
including NIPS, KDD, and ICDM. One of his

papers won the best student paper award at ICDM 2014.

Lifeng Luo is an Associate Professor in the
Department of Geography at Michigan State U-
niversity. He received his B.Sc. from Peking U-
niversity in 1998 and Ph.D. from Rutgers Uni-
versity in 2003. He was a research scientist at
Princeton University before joining MSU in Au-
gust, 2009. He is also affiliated with the Environ-
mental Sciences and Policy Program, Center for
Water Sciences, and Center for Global Change
and Earth Observations. His research covers a
range of topics related to land-atmosphere inter-

action and its impact on the global climate and hydrological cycle at
various spatial and temporal scales. His recent research focuses on the
predictability and prediction of climate extremes such as drought, floods,
heat waves at subseasonal to seasonal scale.

