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Abstract

Collaborative filtering has been widely used in modern
recommender systems to provide accurate recommenda-
tions by leveraging historical interactions between users
and items. The presence of cold-start items and users
has imposed a huge challenge to recommender systems
based on collaborative filtering, because of the unavail-
ability of such interaction information. The factoriza-
tion machine is a powerful tool designed to tackle the
cold-start problems by learning a bilinear ranking model
that utilizes content information about users and items,
exploiting the interactions with such content informa-
tion. While a factorization machine makes use of al-
l possible interactions between all content features to
make recommendations, many of the features and their
interactions are not predictive of recommendations, and
incorporating them in the model will deteriorate the
generalization performance of the recommender system-
s. In this paper, we propose an efficient Sparse Factor-
ization Machine (SFM), that simultaneously identifies
relevant user and item content features, models inter-
actions between these relevant features, and learns a
bilinear model using only these synergistic interaction-
s. We have carried out extensive empirical studies on
both synthetic and real-world datasets, and compared
our method to other state-of-the-art baselines, includ-
ing Factorization Machine. Experimental results show
that SFM can greatly outperform other baselines.

1 Introduction

The explosion of information has created a huge demand
on developing recommender systems to help people nav-
igate through the ever increasing amount of information
and scope out only a small and relevant subset. The
job of the recommender systems is to recommend a few
items (e.g., books sold by Amazon) to human users from
all the items stored in the database. Among many types
of recommender systems, the ones based on collabora-

tive filtering are shown to be especially effective, thanks
to its capability to make personalized recommendation
by exploiting the historical interactions between users
and items to be recommended. The key idea behind
this powerful technique is very intuitive: recommend
similar items to users with similar preferences. Over
the past decade, the collaborative filtering based rec-
ommender systems have been intensively studied and
widely implemented in various applications, including
recommendations for movies [23], music [14], news [5],
books [30], research articles [26], dating [6], and TV
shows [7].

Since the collaborative filtering models are heav-
ily dependent on the historical interactions to model
preferences and make recommendations (a.k.a content-
agnostic recommender system [25]), they are susceptible
to the so-called cold-start problem [9]. A cold-start item
is referred as an item that is just added to the database
and there is little historical information on how users
interact with it. For example, a book that is just pub-
lished and posted on the Amazon website is a cold-start
item. Similarly, a cold-start user is referred as a user
that has no historical interactions with any items in the
system, for example, a newly registered user who has
neither made any purchase on Amazon, nor left any rat-
ings and reviews. Due to the lack of historical informa-
tion of the cold-start items and users, the recommender
systems which rely on historical information cannot be
directly applied to get personalized recommendations.

In order to tackle the cold-start problem, side infor-
mation (also known as content information) about users
and items is typically taken into account to bridge them
to the recommender systems. In the movie recommen-
dation, examples of such content information include ti-
tle, actors, directors of the movies, keywords for movies
and so on. The content information about users include
genders, ages, incomes, addresses for the users and etc.
From the user/item content information we are able to
extract corresponding numerical user/item features to



represent such information. Gartner et al. [12] and
Forbes and Zhu [11] have proposed to integrate the con-
tent information to handle cold-start issues. [12] learns
feature mappings from both user and item features to
latent factors, and use the mapped factors to recover
the rating matrix. [11] proposed to learn the mapping
and factor simultaneously, but only used item features.

The factorization machine [20] is among the recom-
mender systems that consider synergistic interactions
between the features. It has attracted a lot of atten-
tion in the community because it provides a principled
framework to combine the collaborative filtering and the
power of feature engineering from user/item content in-
formation. The factorization machine can be considered
as a bilinear regression model that generates a ranking
score for each user-item pair based on the interaction-
s between the user content features and item content
features. The algorithm for factorization machine can
be very efficient even for a huge feature space, since it
enforces a low-rank bilinear parameter matrix by fac-
torizing it into two small matrix factors. However, we
note that even though the computation bottleneck has
been properly addressed, the factorization machine is
in nature learning a dense bilinear matrix, and thus the
ranking score is given by a linear combination of ALL in-
teractions between EVERY pair of features. For exam-
ple, the number of content features (including both us-
er and item) in a typical TV show recommender system
can easily go over 10,000 (e.g., natural language process-
ing features such as TF-IDF extracted from synopsis of
a TV show), where the final ranking score is given by
a combination of 49,995,000 interactions. Since there
may only be a small subset of features that are relevant
to the recommendation preferences, those interactions
involving irrelevant features can only be considered as
noisy interactions. As such, the factorization machine
ranking model is extremely hard to interpret, and can
lead to suboptimal recommendation performance.

To address the aforementioned problem, we propose
a novel recommendation model called Sparse Factor-
ization Machine (SFM), which simultaneously identi-
fies predictive content features and corresponding rel-
evant interactions among these features, and builds a
bilinear recommendation model using only these rele-
vant interactions. Thus the resulting recommendation
model is then generating ranking scores using interac-
tions from only relevant content features. Specifically,
we firstly reformulate the factorization machine formu-
lation and then leverage the `2,1-norm to induce group
sparsity on the latent factors of factorization machine
model. We propose to use the efficient proximal alter-
nating linearized minimization framework to solve the
optimization problem. We evaluate the proposed SFM

on benchmark recommendation datasets, including A-
mazon book, MovieLens, and Book Cross. The results
from SFM have demonstrated promising recommenda-
tion performance of the proposed approach.

The rest of paper is organized as follows. In section
2 we introduce the related works towards to the state-
of-the-art of learning to rank algorithms. In section 3,
we formulate the SFM framework formally and provide
an efficient optimization method for the solution. In
section 4, we perform extensive experiments on real
world datasets. Finally, section 5 concludes the paper.

2 Related Works

Collaborative filtering recommender systems assume
that the users with similar opinions in historical record-
s tend to share similar opinions in the future[22, 8].
Matrix factorization techniques[28, 15, 29, 27] has been
widely used in collaborative filtering, due to its advan-
tageousness over k-nearest neighbor approaches[1]. By
learning the latent factors of users and items, the rating
matrix is factorized into two low-rank matrices, each of
which represents a latent factor for user or item. Even
though matrix factorization can achieve good recom-
mendation results, it lacks of the ability for handling
cold-start problem, due to the fact that the matrix fac-
torization works as matrix completion.

In order to handle cold-start recommendation prob-
lem, content information has been incorporated into the
matrix factorization methods[2, 3, 24, 12, 11, 18]. For
example, Agarwal et al. proposed a graphical model
by introducing the latent factors from both users and
items[2][3]. However, solving the graphical model by
Monte-Carlo EM algorithm is not efficient when the da-
ta is large. Similarly, Shan et al. proposed a gener-
alized probabilistic matrix factorization by incorporat-
ing topic models over the side information[24]. Howev-
er, the algorithm only considered the side information
from the item. Gantner et al. proposed a two-step pro-
cedure, where the rating matrix is factorized into two
factors, and then a mapping is learned from the fea-
tures of users and items to the factors[12]. Forbes et
al. improved Gantner’s work by integrating the matrix
factorization step and mapping step into one optimiza-
tion problem[11]. However, this work only considered
the mapping from item features to the factor related to
items, which indicates that it only handles the cold-start
on items.

Factorization machines[19, 21] (FM) has been pro-
posed as a general framework of content-aware collab-
orative filtering method. It considers a bilinear mod-
eling in the formulation to take into account the pair-
wise interactions between features, which are usually de-
signed via feature engineering in order to get good per-



formance. Hong et al. [13] proposed a co-factorization
machine (CoFM) to model user interests and discover
the topics from content of tweets simultaneously. T-
wo FMs are built for each problem and correlated with
each other by sharing some common features or latent
factors. Loni et al. [16] applied FMs to cross-domain
collaborative filtering. This method exploits knowledge
from auxiliary domains to improve recommendation on
a target domain, by concatenating the features from
auxiliary domains and target domain. Although these
methods are potentially applicable to cold-start prob-
lem, they are all based on FMs. Note that FMs need
to formulate all pair-wise feature interactions, which in-
creases the model complexity and hence will possibly
subject to overfitting. Cheng et al. [10] proposed a
new framework named Gradient Boosting Factorization
Machines (GBFM) for context-aware recommendation
system. It reduces the model complexity by selecting
feature interactions using a greedy algorithm based on
gradient boosting. However, it might not be optimal to
select interactions using heuristics and the number of
feature interactions could still be large. To tackle this
challenge, we propose to select feature interactions by
selecting useful features directly from the learning mod-
els where all interactions from a useless feature will be
removed.

3 Sparse Factorization Machine

In this section, we will introduce our sparse factorization
machine recommender system.

3.1 Problem Formulation Consider a dataset D =
{(xUp , xIq , rp,q)}, where xUp ∈ RdU represents the feature

of user p, xIq ∈ RdI represents the feature of item q,
and rp,q ∈ R is the rating of user p on item q. The
goal is to learn a model to predict the ranking scores
R = {rp,q} ∈ RnU×nI given XU = {xUp } ∈ RnU×dU

and XI = {xIq} ∈ RnI×dI . Let Θ be the parameters of
the ranking function, and the ranking score of item q
for user p is given by r̂p,q = f(xUp , x

I
q ; Θ). In order to

simplify our representation, we denote x = [xU , xI ] ∈
Rd, where d ≡ dU + dI , and denote ŷi = f(xi; Θ). We
can collectively denote X = {x}. Note that the simple
index i implies a pair of indices: a user index p and an
item index q.

We learn the parameters Θ using a ranking loss
function L and the learning problem becomes:

min
Θ
L(Θ;D) ≡ L(Θ) =

∑
i∈|D|

`(f(xi; Θ), ri)(3.1)

where we have dropped the dependency on the data D
for simplicity of the notations. Our recommendation

problem therefore falls into the supervised learning
paradigm. The key to this problem is to design the
ranking function f(x; Θ). A good ranking function
should have a relative low complexity that can be
computed efficiently, and meanwhile should have the
capability to identify key features contributing to the
ranking score, as well as learn complex interactions
among features.

3.2 Reformulating Factorization Machine The
focus of factorization machine is to model the pairwise
interactions between the features. To see the impor-
tance of the interaction, one can easily examine the fact
that a linear model is not able to make personalized
recommendations. Let w ∈ Rd be the coefficient of a
vector, then we have:

wTx = (wI)TxI + (wU )TxU ,

where wI and wU are corresponding item and user part
of the coefficient respectively. Therefore the ranking of
different items will be exactly the same for all users.
In fact, the two linear terms are modeling item bias
and user bias according to their content features. With
proper normalization, the two terms will have minimal
effects and we thus don’t discuss the linear terms in
the rest of the paper. We note that all the algorithms
follows if such linear terms are added.

In order to model the interactions between the
content features, a bilinear model can be used in the
modeling process. Given the feature X, the loss of the
model can be given by:

LBM(B) =
∑
i

(ri − xTi Bxi)2,(3.2)

where B ∈ Rd×d is the matrix modeling the interac-
tions.

An obvious disadvantage of this approach is that
when feature size is large, the storage of B and asso-
ciated computations can be prohibitive. To reduce the
complexity of the model, a low-rank structure can be
imposed on the matrix B = UUT , where U ∈ Rd×r,
and r is the latent dimension (rank of the bilinear mod-
el). The problem now becomes:

LFM(U) =
∑
i

(ri − xTi UUTxi)2(3.3)

and this becomes the factorization machine model [19].
Let U = [P ;Q], where P ∈ RdU×r and Q ∈ RdI×r.



We can expand the model following the representation:

xTUUTx =

[
xU

xI

]T [
P
Q

] [
P
Q

]T [
xU

xI

]
=xUPPT (xU )T + xIQQT (xI)T

+ 2xUPQT (xI)T

where the first two terms are interactions within user
features and item features, and may not be predictive
because of the same reason as the linear terms. We can
thus further reduce the model complexity, and drop the
interaction terms within the user features and within
item features. Rewriting Eq.(3.3) by replacing the
feature x by [xU ;xI ] and removing the within feature
interactions, we get:

LFM(P,Q)(3.4)

=
∑
p,q

(
rpq −

[
xUp
xIq

]T [
P
0

] [
0
Q

]T [
xUp
xIq

])2

= ‖R−XUPQ
TXT

I ‖2F
Thus, the learning problem becomes Eq.(3.5) if Frobe-
nious norm is used.

(3.5) min
P,Q
LFM (P,Q) +

1

2
λR‖[P,Q]‖2F

where ‖[P,Q]‖2F is the regularization term and λR is the
regularization coefficient.

3.3 Sparse Factorization Machine The model
learned by solving Eq.(3.5) computes ranking scores by
incorporating all user and item features, and potentially
all their interactions. One problem is that when the fea-
ture space (the number of features d) is large, the model
becomes very complex and also hard to interpret, even
P and Q can be limited to low-rank matrices. Since not
all features in the models are relevant, and not all the
interactions between features are useful, identifying rel-
evant features and thus the interactions only involving
relevant features are very important for reducing mod-
el complexity and improving the generalization perfor-
mance. One way to perform the interaction selection
is to do embedded feature selection during the learning
phase, which identifies important features that are rel-
evant to the model. If a feature does not play a roll
in the predictive modeling, all the interactions between
this feature and other features will be deactivated. Note
that enforcing element-wise sparsity by adding `1-norm
term to P and Q does not help. We thus propose to
enforce group sparsity to remove the effect of a feature
of user or a feature of item. The objective function be-
comes:

min
P,Q
L(P,Q) + λ1‖P‖1,2 + λ2‖Q‖1,2

where ‖P‖1,2 =
∑d
i=1 ‖Pi‖2 is the group Lasso, and Pi

is the i-th row of the matrix P .

3.4 Optimization Since the variables of the opti-
mization problem is naturally divided into two blocks,
i.e., P block and Q block. And we can follow the stan-
dard block coordinate descent algorithm with proximal
to solve the problem:
Solving P , fixing Q: The objective function for
solving P is given by

(3.6) min
P
‖R−XUPQ

TXT
I ‖2F + λ1‖P‖1,2

We employ proximal gradient descent method to
solve the optimization problem. The proximal descent
procedure for updating P is:

P (t+1) = Proxfτ(t)

(
P (t) − 1

τ(t)
∇PL(P (t), Q(t))

)
where 1

τ(t)
is the step size, f is the non-smooth func-

tion of P : f(P ) = λ1‖P‖1,2 and ∇PL(P,Q) =
2XT

U (XUP
TQXT

I −RT )XIQ
T . The proximal mapping

for group lasso is defined as:

Proxf (Pi) =
Pi
‖Pi‖

(‖Pi‖ − λ1)+(3.7)

where the thresholding function is given by (x)+ =
max(x, 0). To obtain the step size τ(t), we need to
employ line search strategies.
Solving Q, fixing P : Similarly, we can solve the
following objective function to get Q.

(3.8) min
Q
‖R−XUPQ

TXT
I ‖2F + λ2‖Q‖1,2

The proximal descent procedure for updating Q is:

Q(t+1) = Proxgφ(t)

(
Q(t) − 1

φ(t)
∇QL(P (t+1), Q(t))

)
where 1

φ(t)
is the step size, g is the non-smooth func-

tion of Q: g(Q) = λ2‖Q‖1,2 and ∇QL(P,Q) =
2XT

I (XIQ
TPXT

U −RT )XUP
T . And φ(t) is again to be

determined by a proper line search procedure.
Proximal alternating linearized minimization S-
ince computation of each block involves expensive line
search processes and the algorithm may not scale to
large datasets. More recently, the proximal alternat-
ing linearized minimization (PALM) has provided an
attracting framework to compute alternating optimiza-
tion [4], given that the Lipschitz constant can be com-
puted analytically for each block. The Lipschitz con-
stants LP (Q(t)) and LQ(P (t+1)) can be analytically



computed and given in Theorem 1 and 2 and we can
thus avoid expensive line search. The proof of Theorem
1 and 2 are straightforward so we omit the proof in this
paper.

Theorem 1. The partial gradient ∇PH(P,Q) is Lips-
chitz continuous with the constant

LP (Q(t)) = ‖XT
UXU‖‖Q(t)XT

I XIQ
(t)T ‖

The analytical form of Lipschitz constant
LQ(P (t+1)) is given in Theorem 2.

Theorem 2. The partial gradient ∇QH(P,Q) is Lips-
chitz continuous with the constant

LQ(P (t)) = ‖XT
I XI‖‖P (t)XT

UXU (P (t))T ‖

Since there is no line search process involved in the
algorithm, the algorithm can be very efficient and scale
to large-scale datasets. We summarized the proximal
alternating linearized minimization algorithm for Sparse
Matrix Factorization in Algorithm 1.

Algorithm 1 Proximal alternating linearized mini-
mization algorithm for Sparse Matrix Factorization

INPUT: γ1 > 1, γ2 > 1, XU , XI , R
OUTPUT: Interaction parameter: P ∗, Q∗

Set t = 1
while true do

set τ(t) = γ1‖XT
UXU‖‖Q(t)XT

I XIQ
(t)T ‖,

compute:

P (t+1) = Proxfτ(t)

(
P (t) − 1

τ(t)
∇PL(P (t), Q(t))

)
set φ(t) = γ2‖XT

I XI‖‖P (t)XT
UXU (P (t))T ‖,

compute:

Q(t+1) = Proxgφ(t)

(
Q(t) − 1

φ(t)
∇QL(P (t+1), Q(t))

)
if meet convergence criteria then

Set P ∗ = P (t+1), Q∗ = Q(t+1)

break
end if
Set t = t+ 1

end while

4 Experiments

In this section, we carry out empirical studies to eval-
uate the proposed SFM algorithm on the capability of
recovering relevant features as well as recommendation
performance using real world datasets.
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Figure 1: Feature space recovery on synthetic dataset.

4.1 Recovery of Relevant Features In this sub-
section, we examine how well the proposed SFM can re-
cover features that are relevant to ranking scores. The
sparsity inducing `1/`p-norm is used to recover relevant
groups of variables from the data. And support recovery
property describes the condition under which the rele-
vant variable groups can be recovered. Even though the
support recover property of the group sparsity based on
`1/`p-norm regularization has been studied before [17],
in our paper the SFM model solves a non-convex formu-
lation involving two multiplied components regularized
by the group sparsity inducing norm. This formulation
is very different from traditional group lasso settings.
Therefore it is interesting to study if the proposed mod-
el can indeed recover the relevant features, given that
the underlying data is generated by the interactions of
the these relevant features.

To study the support recovery of the proposed SFM,
we use a synthetic dataset, in which the ratings are
generated using only a subset of original user/item
feature spaces. We firstly generate one random matrix
XU for user features and another for item features XI .
We then generate the interaction matrix by multiplying
two random matrices PQT , in which both P and
Q have randomly sparse rows (to simulate irrelevant
features). The rating matrix is then given by R =
XUPQ

TXT
I + E, E is a noise matrix and elements

of E conforms a normal distribution of N (0, 1). The
SFM is then applied to learn the optimal P̂ , Q̂ from the
given rating matrix R and user/item feature matrices.
We has shown both the generated matrices and learned
matrices in Figure 1. We observe that the proposed
SFM can accurately identify irrelevant features from
relevant features and thus the interactions captured
by P̂ Q̂T only include the interactions between those
relevant features. The exceptional results attract us
to perform theoretical analysis on the properties of the
proposed SFM formulation in our future work.



Table 1: Detail statistics of the datasets used to evaluate the proposed SFM model.

Dataset # users # items # features # rating density
AMAZON 13097 11077 5766 175612 0.12%

BX 17219 36545 8946 197520 0.03%
ML 2113 10197 20 855598 4.0%

Table 2: Top-N recall comparison of competing methods on the recommendation task with cold-start items

Cold-start items Rec@5 Rec@10 Rec@15 Rec@20

Amazon

LAFM-R 0.0134±4.58e-6 0.0115±3.09e-6 0.0106±1.46e-6 0.0096±1.22e-6
LAFM-L 0.0096±1.21e-6 0.0081±8.47e-7 0.0072±9.84e-7 0.0068±8.64e-7
CBMF 0.0200±4.15e-7 0.0174±7.33e-7 0.0161±9.46e-7 0.0149±1.23e-6
SFM 0.0203±3.66e-7 0.0176±8.58e-7 0.0162±1.02e-6 0.0148±1.14e-6

BX

LAFM-R 0.0049±2.75e-6 0.0046±7.32e-7 0.0043±7.75e-7 0.0040±4.26e-7
LAFM-L 0.0030±1.56e-8 0.0031±5.17e-7 0.0032±6.67e-7 0.0034±6.82e-7
CBMF 0.0055±4.50e-7 0.0054±7.13e-7 0.0050±8.72e-7 0.0046±1.22e-6
SFM 0.0065±1.53e-7 0.0055±6.48e-7 0.0051±8.12e-7 0.0047±1.03e-6

ML

LAFM-R 0.0351±5.72e-4 0.0730±2.10e-3 0.0873±1.40e-3 0.0709±8.57e-4
LAFM-L 0.0316±5.16e-4 0.0392±4.56e-4 0.0516±6.49e-4 0.0476±1.74e-4
CBMF 0.0528±1.70e-3 0.0480±1.10e-3 0.0472±1.00e-3 0.0434±5.11e-4
SFM 0.0528±1.70e-3 0.0487±1.20e-3 0.0472±1.00e-3 0.0434±5.11e-4

Table 3: Top-N recall comparison of competing methods on the recommendation task of cold-start users

Cold-start users Rec@5 Rec@10 Rec@15 Rec@20

Amazon

LAFM-R 0.0214±5.34e-7 0.0180±7.07e-7 0.0166±3.48e-7 0.0155±5.99e-7
LAFM-L 0.0229±2.35e-6 0.0200±2.47e-6 0.0181±6.10e-7 0.0165±4.24e-7
CBMF 0.0302±1.13e-5 0.0272±1.09e-6 0.0247±1.82e-6 0.0235±7.00e-7
SFM 0.0313±4.33e-6 0.0281±3.24e-6 0.0256±1.91e-6 0.0238±4.81e-7

BX

LAFM-R 0.0375±9.15e-9 0.0251±5.36e-7 0.0195±9.91e-7 0.0167±1.34e-6
LAFM-L 0.0385±1.15e-6 0.0253±2.17e-7 0.0199±3.32e-7 0.0166±3.21e-7
CBMF 0.0469±2.86e-7 0.0318±2.76e-8 0.0254±5.89e-7 0.0216±5.65e-7
SFM 0.0476±2.55e-6 0.0321±5.04e-6 0.0255±1.94e-6 0.0217±1.95e-6

ML

LAFM-R 0.0461±8.66e-5 0.0592±7.48e-5 0.0903±4.33e-4 0.0946±1.50e-3
LAFM-L 0.0414±1.85e-4 0.0490±5.67e-5 0.0692±9.14e-4 0.0773±2.30e-3
CBMF 0.0572±4.44e-4 0.0790±1.30e-3 0.0827±1.60e-3 0.0763±1.70e-3
SFM 0.0572±4.44e-4 0.0795±1.30e-3 0.0827±1.60e-3 0.0763±1.70e-3

4.2 Recommendation Performance In this sec-
tion, we will study the recommendation performance
and compare the proposed SFM with representative
methods that exploit content features. In Section 4.2.1
we describe the datasets that will be used in our em-
pirical studies, then we introduce the baselines method-
s used for comparison in Section 4.2.2, and finally we
present the comparison results in Section 4.2.4.

4.2.1 Dataset Description A set of three popular
benchmark datasets are used to evaluate the perfor-
mance of SFM, including Amazon Books, Book Crossing
and MovieLens.

Amazon Book (AMAZON) is a dataset which col-
lects the best-selling books and their ratings from Ama-
zon. The ratings are ranging from 1 to 5. The rating is
0 if it is missing or no user rated that book. The item
feature is collected from the description of the book.
Book Crossing (BX) is extracted from the Book Cross-
ing dataset [31]. The features of these books are ex-
tracted from Amazon. The rating for BX is from 1 to 9.
MovieLens (ML) is extracted from the MovieLens-1M
datasets 1. Similar to AMAZON dataset, the ratings
are ranging from 1 to 5. The features for the items are
generated from the genres of the movies. In order to

1http://www.movielens.org



Table 4: Top-N recall comparison of competing methods on the recommendation task with both cold-start users
and items scenario

Cold-start users and items Rec@5 Rec@10 Rec@15 Rec@20

Amazon

LAFM-R 0.0140±3.00e-7 0.0122±5.15e-7 0.0113±2.19e-7 0.0105±1.07e-6
LAFM-L 0.0097±1.09e-7 0.0084±4.13e-7 0.0074±6.16e-7 0.0067±3.95e-7
CBMF 0.0207±1.28e-6 0.0190±4.03e-6 0.0175±7.55e-7 0.0161±3.53e-7
SFM 0.0211±3.25e-6 0.0189±3.63e-6 0.0172±5.88e-7 0.0161±5.38e-7

BX

LAFM-R 0.0055±6.50e-7 0.0051±1.24e-8 0.0043±9.62e-8 0.0041±2.64e-7
LAFM-L 0.0037±4.88e-7 0.0036±1.83e-7 0.0035±4.93e-7 0.0034±7.89e-7
CBMF 0.0069±1.35e-6 0.0058±4.48e-7 0.0052±7.51e-7 0.0046±2.87e-7
SFM 0.0072±1.07e-6 0.0059±3.60e-7 0.0052±7.31e-7 0.0047±3.32e-7

ML

LAFM-R 0.0373±9.94e-4 0.0728±2.20e-3 0.0893±1.70e-3 0.0720±9.86e-4
LAFM-L 0.0316±7.69e-4 0.0390±7.67e-4 0.0511±1.11e-3 0.0474±4.28e-4
CBMF 0.0515±1.70e-3 0.0469±9.14e-4 0.0471±1.11e-3 0.0429±6.36e-4
SFM 0.0521±1.70e-3 0.0477±9.66e-5 0.0471±1.11e-3 0.0429±6.44e-4

Figure 2: Illustration of the partitioning of the dataset

generate item features from item descriptions such as in
AMAZON, we have adopted standard natural language
processing procedures. We firstly removed stop words,
words appearing in less than 20 items, and the word-
s appearing in more than 20% of the items. We then
calculate the TF-IDF values for the remaining words as
the feature of the items.

The user features are not available in all these
datasets. We thus follow the conventional approach
to generate the user features by aggregating the item
features from items that are rated by the user. The
aggregated user feature vector describes the user’s pref-
erence via the item feature space. In typical commer-
cial recommender system, the number of ratings in the
whole dataset is very limited, and however the dataset-
s we have in hand is considerably dense. We would
like to evaluate the methods in a more realistic recom-
mender system setting, and we thus proceed to sparsify
the dataset to reduce the number of ratings by subsam-
pling the ratings from the original rating set. In the
experiments, the subsampling rate is 50%. The details
of the 4 processed datasets are given in Table 1.

4.2.2 Competing Approaches The competing
methods include the representative methods that
exploit content information in different ways, and are
given below:

• Learning Attribute-to-Feature Mappings with
Ridge regression (LAFM-R) [12]: This method
combines the matrix factorization and content-
based method to consider both the historical
records and the cold-start items. First it will fac-
torize the rating matrix into a user factor U and
an item factor V . Then the method learns a map-
ping function from the user features XU to U and a
mapping function from the item features XI to V .
For cold-start users with feature vector xu or items
with feature vector xi, first the mapping functions
are applied on xu or xi to get the factor Uu or Vi,
then the ratings can be calculated from the learned
user or item factors by recovering the partial matrix
for the cold-start users or items. In this baseline,
the mapping function is using a Ridge regression.

• Learning Attribute-to-Feature Mappings with Las-
so regression (LAFM-L): Unlike LAFM-R, in this
baseline, we use Lasso regression to learn the map-
ping from features to the factorized factors.

• Content-boosted Matrix Factorization (CBM-
F) [11]: This method is similar to the above two
baselines with two differences: one is that it only
learns a mapping from the features of items to one
of the factorization terms; another is that it learns
the factorization and the mapping function simul-
taneously. To be specific, the ranking matrix R is
assumed to be R = UV T where V = XW and X is
the feature matrix for items. In our case, we need
to modify the assumption so that we can adopt the
user features into the formulation. To do so, we



assume the U = XUWU and V = XIWI , where
WU ∈ RdU×k and WI ∈ RdI×k. We add Frobenius
norm of WU and WI as the regularizer to avoid
overfitting. The objective function is given by

min
WU ,WI

‖R−XUWUW
T
I X

T
I ‖2F

+ λ(‖WU‖2F + ‖WI‖2F )(4.9)

Note that this baseline is equivalent to an im-
proved version of factorization machine (FM) [20],
as shown in the previous sections.

4.2.3 Recommendation Tasks and Evaluation
We evaluate the competing algorithms on three different
recommendation tasks: 1) recommendation involving
only cold-start items, 2) recommendation involving only
cold-start user, and 3) recommendation involving both
cold-start users and cold-start items. We thus partition
our rating matrix into four parts, where one of the
partitions works as training data, one of the partitions
includes testing data for cold start items, one of the
partitions includes testing data for cold start users, and
one of the partitions include testing data for cold start
with new users and new items. Figure 2 illustrates the
idea of such partitioning. We note that the partition is
performed in a random way. The selection of parameters
of the models used an independent validation dataset.

For each task, we learn models on the training data,
and the testing is done by firstly ranking the items to
be recommended according to the scores produced by
the models. We then use the top-N recommendation
evaluation metric to compute the recall at n (Rec@n),
defined as follows:

Rec@n =
#items liked by user in top-n items

n

The metric measures on average the percentage of items
preferred by a user in the top n item set from the
recommended list provided by the recommender system.
We report the results for Rec@5, Rec@10, Rec@15 and
Rec@20 in this paper.

4.2.4 Experimental Results We perform the
methods on three different recommendation tasks and
the results are shown in Table 2, 3 and 4, respectively.
Overall, the proposed SFM is always among the best
performance in all three task compared with other
competing methods. In the Amazon and BX datasets,
the SFM can always outperform other competing
methods. However, we notice that in the ML dataset,
the proposed SFM cannot outperform baselines when
N is larger than 5. This may relate to the limited
features space of the user/item content features. Indeed

feature selection is mainly design to handle large scale
feature space, and are not ideal for cases where only
a small feature space present. Sharing the similar
spirit, the proposed SFM is designed to perform feature
selection and thus interaction selection, and may not
perform well with small feature space.

5 Conclusions

The factorization machine is a powerful tool designed
to tackle the cold-start problems, exploiting the inter-
actions with such content information. A factorization
machine makes use of all possible pair-wise interactions
within the content information to make recommenda-
tions, many of which are not interactions between rel-
evant features that are predictive of recommendation-
s. In this paper, we propose an efficient Sparse Fac-
torization Machine (SFM), that simultaneously identi-
fies predictive user features and item features, models
synergistic interactions between these relevant features,
and learns a bilinear model using only these interaction-
s. We have carried out extensive empirical studies on
both synthetic and real-world datasets, and compared
our method to other state-of-the-art baselines, includ-
ing Factorization Machine. Experimental results show
that SFM can greatly outperform other baselines.
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