
Multi-Task Feature Interaction Learning

Kaixiang Lin1, Jianpeng Xu1, Inci M. Baytas1, Shuiwang Ji2, Jiayu Zhou1

1Computer Science and Engineering, Michigan State University, East Lansing, MI 48824
2Electrical Engineering and Computer Science, Washington State University, Pullman, WA 99164

{linkaixi, xujianpe, baytasin, jiayuz}@msu.edu, sji@eecs.wsu.edu

ABSTRACT
Linear models are widely used in various data mining and
machine learning algorithms. One major limitation of such
models is the lack of capability to capture predictive infor-
mation from interactions between features. While introduc-
ing high-order feature interaction terms can overcome this
limitation, this approach dramatically increases the model
complexity and imposes significant challenges in the learn-
ing against overfitting. When there are multiple related
learning tasks, feature interactions from these tasks are usu-
ally related and modeling such relatedness is the key to im-
prove their generalization. In this paper, we propose a novel
Multi-Task feature Interaction Learning (MTIL) framework
to exploit the task relatedness from high-order feature in-
teractions. Specifically, we collectively represent the fea-
ture interactions from multiple tasks as a tensor, and prior
knowledge of task relatedness can be incorporated into dif-
ferent structured regularizations on this tensor. We formu-
late two concrete approaches under this framework, namely
the shared interaction approach and the embedded interac-
tion approach. The former assumes tasks share the same
set of interactions, and the latter assumes feature interac-
tions from multiple tasks share a common subspace. We
have provided efficient algorithms for solving the two for-
mulations. Extensive empirical studies on both synthetic
and real datasets have demonstrated the effectiveness of the
proposed framework.
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1. INTRODUCTION
Linear models are simple yet powerful machine learning

and data mining models that are widely used in many ap-
plications. Due to the additive nature of the linear models,
it can fully unleash the power of feature engineering, allow-
ing crafted features to be easily integrated into the learning
system. This is a desired property in many practical appli-
cations, in which high-quality features are the key to pre-
dictive performance. Moreover, efficient parallel algorithms
are readily available to learn linear models from large-scale
datasets. Despite its attractive properties, one apparent lim-
itation of such models is that they can only learn a set of
individual effects of features contributing to the response,
due to its linear additive property. Thus when a part of
the response is derived from interactions between features,
such models would not be able to detect such non-linear
predictive information, thereby leading to poor predictive
performance.

In practice, high-order feature interactions are common
in many domains. For example, in genetics studies, envi-
ronmental effects and genetic-environmental interaction are
found to have strong relationship with the variability in
adoptee aggressivity, conduct disorder and adult antisocial
behavior [7]. Similarly, the interaction effects between con-
tinuance commitment and affective commitment was found
in predicting annexed absences [28]. Also, a recent study
of depression found that genotype, sex, environmental risk
and their interaction have combined influence on depression
symptoms [12]. It is also reported that the interaction of
brain-derived neurotrophic factor and early life stress expo-
sure are identified in predicting syndromal depression and
anxiety, and associated alterations in cognition [16]. In
biomedical studies, many human diseases are a result of
complicated interactions among genetic variants and envi-
ronmental factors [19]. One intuitive solution to overcome
this limitation is to augment interaction terms into linear
models, explicitly modeling the effects from the interactions.
However, this will dramatically increase the model complex-
ity and lead to poor generalization performance when there
is limited amount of data [9, 11, 23, 26, 35].

On the other hand, when there are multiple related learn-
ing tasks, the multi-task learning (MTL) paradigm [1, 4, 8]
has offered a principled way to improve the generalization
performance of such learning tasks by leveraging the related-
ness among tasks and performing inductive transfer among
them. The past decade has witnessed a great amount of
success in applying MTL to tackle problems where large
amount of labeled data are not available or creating such



datasets incurs prohibitive cost. Such problems are espe-
cially prevalent in biological and medical domains, where
MTL has achieved significant success, including data analy-
sis on genotype and gene expression [21], breast cancer di-
agnosis [37] and progression modeling of Alzheimer’s Dis-
ease [18], etc. The MTL improves generalization perfor-
mance by learning a shared representation from all tasks,
which serves as the agent for knowledge transfer. Structured
regularization has provided an effective means of modeling
such shared representation and encoding various types of
domain knowledge on tasks [1, 20, 24, 33]. The attractive
benefits provided by MTL make it an ideal scheme when
learning problems involve multiple related tasks with fea-
ture interactions, because tasks may be related with each
other by shared structures on feature interactions. For ex-
ample, predicting various cognitive functions may involve a
shared set of interactions among brain regions.

However, many existing MTL frameworks are based on
linear models [1] in the original input space. Thus they can-
not be directly applied to explore task relatedness in the
form of high-order feature interactions. On the other hand,
although traditional nonlinear MTL methods based on neu-
ral networks (e.g., [2]) can exploit non-linear feature interac-
tions to some extends, it is generally difficult to encode prior
knowledge on task relatedness to such models. In this paper,
we propose a novel multi-task feature interaction learning
framework, which learns a set of related tasks by exploit-
ing task relatedness in the form of shared representations
in both the original input space and the interaction space
among features. We study two concrete approaches under
this framework, according to different prior knowledge about
the relatedness via feature interactions. The shared interac-
tion approach assumes that there are only a small number
of interactions that are relevant to the predictions, and all
tasks share the same set of interactions; the embedded inter-
action approach assumes that, for each task, the feature in-
teractions are derived from a low-dimensional subspace that
is shared across different tasks. We have provided formula-
tions and efficient algorithms for both approaches. We con-
duct empirical studies on both synthetic and real datasets
to demonstrate the effectiveness of the proposed framework
on leveraging feature interactions from tasks. The contribu-
tions of this paper are three folds:

• Our novel framework has extended the MTL paradigm,
for the first time, to allow high-order representations
to be shared among tasks, by exploiting predictive in-
formation from feature interactions.

• We proposed two novel approaches under our frame-
work to model different task relatedness over feature
interactions.

• Our comprehensive empirical studies on both synthetic
and real data have led to practical insights of the pro-
posed framework.

The remainder of this paper is organized as follows: Sec-
tion 2 reviews related work of MTL and models involving
feature interactions. Section 3 introduces the framework for
MTIL. The two approaches under MTIL have been given
in 4. Section 5 presents the experimental results on both
synthetic and real datasets. Section 6 concludes the paper.

2. RELATED WORK
The proposed research is related to existing work on MTL
and feature interaction learning. In this section, we briefly
summarize the these related work and show how our work
advances these areas.

2.1 Multi-Task Learning
MTL has been extensive studied over the last two decades.

In the center of most MTL algorithms is how task relation-
ships are assumed and encoded into the learning formula-
tions. The concept of learning multiple related tasks in par-
allel was first introduced in [8]. It was demonstrated in
multiple real-world applications that adding a shared repre-
sentation in neural network tasks can help others get better
models. Such discovery had inspired many subsequent re-
search efforts in the community and applications in diverse
application domains. Among these studies, the regularized
MTL framework has been pioneered by [13]. The regular-
ization scheme can easily integrate various task relationship
into existing learning formulations to couple MTL, thus pro-
viding a flexible multi-task extension to existing algorithms.
It is well adopted and is soon generalized to a rich family of
MTL algorithms.
MTL via Regularization. Among the work in the regu-
larization based MTL scheme, there are many different as-
sumptions about how tasks are related, leading to different
regularization terms in the formulation. For example, one
common assumption is that the tasks share a subset of fea-
tures, and the task relatedness can be captured by imposing
a group sparsity penalty on the models to achieve simultane-
ous feature selection across tasks [33, 24]. Another common
assumption is that the models of tasks come from the same
subspace, leading to a low-rank structure within the model
matrix. Directly penalizing the rank function leads to NP-
hard problems, and one convex alternative is to penalize the
convex envelop of the rank function, i.e., trace norm. This
encourages low-rank by introducing sparsity to the singular
values of the model matrix [20]. In [1], the authors studied
a MTL formulation that learns a common feature mapping
for the tasks and assumed all tasks share the same features
after the mapping. The authors have shown that this as-
sumption can also be equivalently expressed by a low- rank
regularization on the model. There are many more formu-
lations that fall into this category of formulation to capture
task relatedness by designing different shared representa-
tion and regularization terms, such as cluster structures [38],
tree/graph structures [21, 10], etc. However, to the best of
our knowledge, all of these formulations do not consider fea-
ture interactions in the model, and extensions to consider
interactions are not straightforward. In this work, we will
extend the MTL framework to enable knowledge transfer
not only in the original input space, but also in higher- or-
der feature interaction space.
Multilinear MTL. The use of tensor in MTL has shown to
be very effective in representing structural information un-
derlying in MTL problems. In [27], Romera-Paredes et al.
proposed a multilinear multitask (MTMTL) framework that
arranges parameters of linear effects from all tasks into a ten-
sor W, by which they are able to represent the multi-modal
relationships among tasks. In a dataset containing multi-
modal relationships, tasks can be referenced by multiple in-
dices. In MTMTL, the authors employed a regularizer on W
to induce a low-rank structure to transfer knowledge among
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Figure 1: Illustration of MTL with feature inter-
actions. (a) the feature interactions from multiple
tasks can be collectively represented as a tensor Q;
group sparse structures (c) and low-rank structures
(b) in feature interactions can be used to facilitate
multi-task models.

tasks. The optimization problem contains the minimization
of tensor’s rank, which leads to solving a non-convex prob-
lem. Thus the authors develop an alternating algorithm,
employing the Tucker decomposition and convex relaxation
using tensor trace norm. Although the authors also used
a tensor representation in MTL, the learning formulations,
implications, as well as the meaning of such the tensor is fun-
damentally different from those in our work. The proposed
MTIL framework utilizes tensor to capture the relatedness
among tasks and transfer knowledge through high-order fea-
ture interactions, which cannot be achieved by any existing
MTL formulations. Note that the tensor in MTMTL is in-
dexed by multi-modal tasks. In MTIL, the tensor is indexed
by features and tasks, which is clearly different from the
aforementioned work. In the proposed embedded interaction
approach for MTIL, however, we face a similar challenge in
MTMTL to seek a solution involving a low-rank tensor.

2.2 Feature Interaction
In many machine learning tasks, we are interested in learn-

ing a linear predictive model. Given the input feature vector
of a sample, the response is given by a linear combination
of these features, i.e., a weighted sum of the features. Be-
cause of this reason we call them linear effects. There are
strong evidences found in many complex applications that,
in addition to the linear effects, there are also effects from
high-order interactions between such features. As a result,
there are considerable efforts from both academia and in-
dustry aiming at addressing this limitation by removing the
additive assumption and including interaction effects.

To overcome the dimensionality issues introduced by in-
teraction effects, two types of heredity constraints have been
studied [5]; namely strong hierarchy in which an interac-
tion effect can be selected into the model only if both of its

corresponding linear effects have been selected, and weak
hierarchy, in which an interaction effect can be selected if
at least one of its corresponding linear effects has been se-
lected. In [11], the authors proposed an approach known as
SHIM to identify the important interaction effects. SHIM
extends the classical Lasso [29] and enforces a strong hier-
archy. An iterative algorithm was proposed based on Lasso,
which may not scale to problems with high dimensional fea-
ture space. Radchenko et. al proposed the VANISH method
to address the problem [26]. They developed a convex for-
mulation with a refined penalty that can not only learn the
sparse solution, but also treat the linear and interaction ef-
fects using different weights. This way, the main effect could
have more influence on the prediction. In [5], a hierarchical
lasso was proposed to search for interactions with large main
effects instead of considering all possible interactions. The
authors proposed an algorithm based on ADMM for strong
hierarchy lasso and a generalized gradient descent for weak
hierarchical lasso. More recently, Liu et al. [23] proposed
an efficient algorithm for solving the non-convex weak hier-
archical Lasso directly, based on the framework of general
iterative shrinkage and thresholding (GIST) [17]. The au-
thors proposed a closed form solution of proximal operator
and further improved the efficiency of solving the subprob-
lem of proximal operator from quadratic to linearithmic time
complexity.

In many real work applications there are multiple related
tasks. When those these tasks involve interaction effects, the
tasks could be related via the high order feature interactions.
In our paper, we propose to address the model complexity
issue from interaction effects using a new perspective, by
leveraging such relatedness.

3. TASK RELATEDNESS IN HIGH ORDER
FEATURE INTERACTIONS

In this section, we present the framework of Multi-Task
feature Interaction Learning (MTIL). For completeness, we
give a self-contained introduction of our work. We will de-
rive concrete learning algorithms under this framework in
Section 4.
Linear and Interaction Effects. Consider the traditional
linear models. For an input feature vector x ∈ R

d and a
scalar response y, we have assumed the following underlying
linear generative model:

y =
d∑

i=1

xiwi + ε,

where w ∈ R
d is the weight vector for linear effects, and ε ∼

N (0, σ2) is a Gaussian noise. A linear model f(x;w) = xTw
can be a quite effective prediction function. However, if the
underlying generative model includes effects from feature
interactions, i.e.,

y =
d∑

i=1

xiwi +

d∑
i=1

d∑
j=1

xixjQi,j + ε,

where xixjQi,j is the joint effect between the ith feature and
the jth feature, and Qi,j is the weight for this joint effect.
This type of feature interactions have been commonly found
in many applications. If the training data follow this distri-
bution then the linear model is not enough to capture the
relationship between input features and output responses.



One of the approaches is to introduce non-linear feature in-
teraction terms into the linear model. That is, we can denote
it as a quadratic function:

f(x;w,Q) = xTw + xTQx, (1)

where w ∈ R
d and Q ∈ R

d×d collectively represent the
parameters for linear effects and interaction effects, respec-
tively. We note that Q is typically symmetric because this
representation includes two terms involving feature i and j:
xixj(Qi,j + Qj,i) and it also includes second-order feature
transformations of the original features x2

iQi,i.
Discussions on Feature Interactions. In supervised
learning, we seek a predictive function that maps an in-
put vector x ∈ R

d to a corresponding output y ∈ R. Let
(X,y) = {(x1, y1), (x2, y2), ...(xn, yn)} be a training dataset,
in which each data point is drawn from certain i.i.d. distri-
bution μ. The goal of learning is to find the best predictor
f̂ ∈ H so that the predicted value ŷi for the input data xi is
as close as possible to the ground truth yi, ∀(xi, yi) ∈ (X,y),
given a loss function L(., .). We hope that the predictor f
learned in this way is close to the optimal model that mini-
mizes the expected loss according to the μ:

R(f) = E(X,y)∼μL(f(X),y). (2)

Such predictor is given by the minimum of the empirical
risk:

f̂ = argmin
f∈H

n∑
i=1

L(f(xi),yi).

The error caused by learning the best predictor in the train-
ing dataset is called the estimation error. The error caused
by using a restricted H is called the approximation error.
For a fixed data size, the smaller the hypothesis space H,
the larger the approximation error, and vice versa. The
trade-off between approximation error and estimation error
is controlled by selecting the size of H. By including feature
interactions we would enlarge the hypothesis space, and we
may be able to dramatically minimize the approximation
error compared to the traditional hypothesis space for lin-
ear models. On the other hand, we note that given a limited
amount of data, a large hypothesis space may result in mod-
els with poor generalization performance. We will need to
either increase our training data, or provide effective regu-
larizations to narrow down the hypothesis space.
Multi-task Feature Interactions. We consider the set-
ting that there are multiple learning tasks which are related
not only in the original feature space, but also in terms of
feature interactions. The propose framework simultaneously
learns all related tasks and provides an effective regulariza-
tion on the hypothesis space using relatedness on the inter-
actions.

Let D = (X1,y1), . . . , (XT ,yT ) be the training data for
the T learning tasks, and the i.i.d. training samples for
task t is drawn from (μt)

mt , where mt is the number of
data points available for task t. We collectively denote the
distribution as D ∼ μ =

∏T
t=1(μt)

mt . All tasks have a d-

dimensional feature space (i.e., xi ∈ R
d). The correspond-

ing features are homogeneous and have the same semantic
meaning. The total training data points are:

(Xt,yt) = {(x1t, y1t), (x2t, y2t), . . . , (xmt, ymt)}, t = 1, . . . , T,

The goal of MTL is to learn T functions for the tasks such

that ft(xit) = yit, based on the assumption that all task
functions are related to some extent.

In order to consider interactions for each task, we use the
quadratic predictive function in Eq. 1 for all tasks. We col-
lectively represent the linear effects from all tasks as a matrix
W = [w1, . . . ,wT ] ∈ R

d×T , wi ∈ R
d and the interaction ef-

fects as a tensor Q ∈ R
d×d×T , in which the t-th frontal slice

Qt ∈ R
d×d represents the interaction effects for task t. We

illustrate this interaction tensor in Figure 1(a).

Given specific loss functions �̂ for samples from one task,
(e.g., square loss for regression and logistic loss for clas-
sification, see Table 1), the loss function for each task is

�t(f,w,Q;X,y) =
∑mt

i=1 �̂(f(xi;w,Q), yi). Our multi-task
feature interaction loss function is given by:

L(W,Q; f,X,Y) =
T∑

t=1

�t(f,wt,Qt;Xt,Yt). (3)

Note that it is not necessary for all tasks to have the same
loss function. In MTL, the learning of each task benefits
from the knowledge from other tasks, which effectively re-
duces the hypothesis space for all tasks. In order to achieve
knowledge transfer among tasks, we would like to impose
shared representations via designing regularization terms on
both W and Q, which specify how tasks are related in the
original feature space and features interactions, respectively.
The MTIL Framework. The proposed Multi-Task fea-
ture Interaction Learning (MTIL) framework is then given
by the following learning objective:

min
W,Q

L(W,Q; f,X,Y) + λRRF (W) + λIRI(Q), (4)

where RF (W) is the regularization providing task related-
ness in the original feature space, RI(Q) is the regularization
encoding our knowledge about how feature interactions are
related among tasks, λR and λI are the corresponding regu-
larization coefficients. For λI → ∞, the problem reduces to
traditional MTL, when RI is chosen properly. In this paper,
we formulate two concrete approaches to capture the feature
interaction patterns:

• Shared Interaction Approach. In many applica-
tions, even though we have a large number of feature
interactions, only a few interactions may be related
to the response [5, 11]. When learning with multiple
tasks, different tasks may share exactly the same set
of feature interactions, but with different effects. As
such, we can design MTIL formulations that learns a
set of common feature interactions, which could effec-
tively reduce the hypothesis space. During the learning
process the selected feature interactions for one task
will be task’s knowledge, contributing to the share rep-
resentation: a set of indices of common interactions.
An analogy in traditional MTL is the joint feature
learning approach [24, 33], in which tasks share the
same set of features. One way to achieve this approach
is by using the structured sparsity to induce the same
sparsity patterns on the interaction effects. An illus-
tration of this approach is given in Figure 1(b).

• Embedded Interaction Approach. When the re-
sponse from one task is related to complicated feature
interactions, the patterns of such interactions may be
captured by a low-dimensional space, resulting in a



low-rank interaction matrix. When there are multiple
related tasks, they could have a shared low-dimensional
space, i.e., different interaction matrices may share the
same set of rank-1 basis matrices, but have different
weights associated with these basis matrices. When
collectively represented by a tensor, we end up with
a low-rank tensor. During the learning process, each
task contributes their subspace information to facili-
tate learning of the share low-dimensional subspace,
which in turn, improves the feature space. The anal-
ogy in traditional MTL is the low-rank based mod-
els [1, 20]. However, there are challenging questions
such as: How to define a proper rank function for ten-
sor? Are there tractable algorithms to induce low-rank
structure in tensor? In the next section we will discuss
these important questions and propose efficient algo-
rithms. We illustrate this approach in Figure 1(c).

We note that even though we only provided two specific
approaches in this paper, the proposed MTIL framework
could offer broader class of formulations. The proposed
framework allows many other possible ways to define task
relatedness on feature interactions, leading to a brand-new
research area of MTL.

4. FORMULATIONS AND ALGORITHGMS
OF THE TWO MTIL APPROACHES

In this section, we will study how the formulations and al-
gorithms of the shared interaction approach and embedded
interaction approach under the proposed MITL framework.
We note that extension of multi-task learning to feature in-
teractions is not trivial because of the involvement of ten-
sors. We start with formulating the shared interaction ap-
proach by incorporating a group Lasso penalty to introduce
structured sparsity on the tensor, which would select only
a set of common feature interactions across different tasks
that are relevant to the prediction. For the embedded inter-
action approach, we propose both a convex formulation and
a non-convex formulation. While the convex formulation
leads to efficient optimization algorithms and global solu-
tions, the non-convex formulation provides reduced storage
complexity for large-scale problems.

4.1 Preliminary
In this paper, we use the following basic definition of tensor:
Mode-n fiber is a vector defined by fixing every index but
one. We may see it as the higher order analogue of matrix
rows (mode-2 fibers) and columns (mode-1 fibers). For ex-
ample, in a three-way tensor Q ∈ R

n1×n2×n3 , the mode-3
fiber is Qi,j,: ∈ R

n3 .
Mode-n unfolding is the process of reordering the ele-
ments of an N-way tensor Q ∈ R

n1×n2×,..,×nN into a ma-
trix. The mode-k unfolding of tensor Q is denoted by Q(k) ∈
R

nk×Jk , where Jk =
∏N

i=1,i �=k. The matrix is arranged by
concatenating all mode-k fibers of the tensor.
Rank-n in our paper denotes the rank of tensor’s mode-n
unfolding. It’s actually the dimension of the space spanned
by the mode-n fibers of tensor. Specifically, rankn(Q) =
rank(Q(n)). When Q is a matrix (i.e. 2-way tensor), this
becomes the regular definition of rank, since rank1(Q) =
rank2(Q) = rank(Q).

4.2 Shared Interaction Approach
The goal of the shared interaction approach is to identify

a set of common and relevant feature interactions across dif-
ferent tasks. The interaction tensor Q in our framework
has provided a convenient representation to encode such in-
formation, and we are able to incorporating a group Lasso
penalty [14] to induce a special type of structured sparsity
on the tensor, coupling the same interactions for all tasks.
Recall that the sparsity implies that only the significant in-
teraction effects are captured in the model. For the purpose
of shared interaction, a sparse tensor norm is defined as:

||Q||GL-Sym ≡
∑d

i=1

∑d

j≥i

√∑K

k=1

(
Q2

i,j,k +Q2
j,i,k

)
.

(5)

Note that this norm enforces a symmetric sparsity by over
the tensor, so that the one group is defined to include co-
efficients of one interaction between feature i and feature j,
from all tasks. Penalizing the tensor sparse norm leads to
the following formulation:

min
w,Q

L(W,Q; f,X,Y) + λFRF (W) + λI ||Q||GL-Sym, (6)

where the parameter λI control the sparsity of tensor Q, a
larger μ will end up with a more sparse Q. The solution
to formulation delivers a tensor such that the mode-3 fibers
are either all zeros vectors or non zero vectors, i.e., inter-
action effects between 2 features xi, xj either exists on all
tasks, or irrelevant for all tasks. Note that even the sparsity
patterns is same for all tasks, their interactions may have
different weights. It is easy to see that, this approach sub-
sumes the traditional multi- task learning as a special case:
when λI → ∞ by setting regularization parameter on tensor
Q to infinity, all the elements in of Q in the solution will be
zeros, and the model only considers linear effects.

When the loss function L chosen is convex and continu-
ously differentiable with Lipschitz continuous gradient [26],
then we can use proximal based gradient methods, such as
first order FISTA [3], SpaRSA [34] or second order Proximal
Newton [22] to solve it efficiently. Because that the linear
effects and interaction effects are decoupled in the predictive
function, a major class of loss functions belong to this cate-
gory, and we give a few examples of common loss functions
in Table 1. Note that even when L is non-convex, a local
optimal solution can be efficiently obtained using the GIST
framework [17]. The key to apply these algorithms is to ef-
ficiently compute the proximal operator that associates to
the problem (refer to [25] for more details about proximal):

min
W,Q

1

2
(‖W − Ŵ‖2F + ‖Q − Q̂‖2F ) + ρ1RF (W) + ρ2||Q||GL-Sym,

where Ŵ and Q̂ are intermediate solutions at each step, ρ1
and ρ2 are regularization parameters augmented with step
size. Note that we have extend the Forbenius norm from
matrix to tensor. We see that the problem is decoupled for
W and Q. And the tensor proximal:

min
Q

1

2
‖Q − Q̂‖2F + ρ2||Q||GL-Sym,

can be solved in the same way as the group Lasso proximal
operator [36]. Moreover, we find that when the gradient
is symmetric, we don’t need to enforce a symmetric tensor



Table 1: Examples of three common smooth loss functions and their gradients with the interaction augmented
predictive function given in Eq. (1).

Loss with Interaction Loss function Li Gradient | Linear Eff. ∇WLi Gradient | Interaction Eff. ∇QtLi

Logistic Loss∗ −[log(g(xi))yti + (1− yti)(log(1− g(xi)))] (g(xi)− yti)xi (g(xi)− yti)xix
T
i

Squared Loss 1
2
||xT

i wt + xT
i Qtxi − yti||22 xi(x

T
i wt + xT

i Qtxi − yti) xi(x
T
i wt + xT

i Qtxi − yti)x
T
i

Squared Hinge† h(yti(x
T
i wt + xT

i Qtxi)) ytixih
′(xT

i wt + xT
i Qtxi) ytixix

T
i h′(xT

i wt + xT
i Qtxi)

∗g(x) is the sigmoid function defined as g(xi) = 1/
{
1 + exp(−(xT

i wt + xT
i Qtxi))

}

†h′(z) = {−1 for z ≤ 0, z − 1 for 0 < z < 1, 0 for z ≥ 1}
sparse norm, and we could simply use a simple alternative:

||Q||GL =
∑

i,j

√∑K

k=1
Q2

i,j,k,

and initialize the algorithm with a symmetric tensor as the
starting point. The reason that symmetry holds can be ex-
plained by two parts. First, the gradient of Q is symmetric,
therefore the gradient descent step won’t change the symme-
try of tensor Q. Second, the proximal operator associated to
sparse tensor norm won’t change the symmetry of matrix.
To see this, the proximal operation is performed by vector-
izing the matrix into a vector and shrink each element of the
vector with respect to a input vector, which is obtained by
the last gradient descent step. Since the input vector repre-
sents an symmetric matrix, the element and its symmetric
element will always shrink to the same new value. There-
fore, the symmetry of Q holds. The sparse tensor norm is
equivalent to perform the l1 projection of vectors where each
element is the l2 norm of mode-3 fiber in tensor Q.

4.3 Embedded Interaction Approach
The share interaction approach has enforced a very re-

strictive form of how tasks are supposed to relate to each
other. In many applications, the prediction may be a re-
sult of complicated feature interactions, instead only in-
volves a few interactions. Even though the prediction may
involve all feature interactions, it is usually a reasonable as-
sumption that there are patterns among these interactions.
Numerically, existence of patterns imply a low-dimensional
subspace, which is reflected by a low-rank structure in the
matrix. When there are multiple related learning tasks,
one way for these tasks relate to others via a shared low-
dimensional subspace, which gives us a low-rank tensor. As
such, we may design a structured regularization to encour-
age the matrix Q to be a low-rank tensor. In this paper we
describe one convex formulation that encourages low-rank
structure by penalizing a tensor norm and one non-convex
formulation that directly learns a low-rank representation.

4.3.1 Convex Formulation
One way to obtain a low-rank tensor is to augment our

formulation with a rank penalty. One problem associates to
tensor is that there is no consistent way to define the rank
of a tensor. One way is to use the average rank of unfolding
on different mode [15]:

1

N

N∑
n=1

rankn(Q) =
1

N

N∑
n=1

rank(Q(n)),

where N is the total number of mode of the tensor (N = 3
when only pair-wise interactions), and Q(n) is unfold on n
mode. Since minimizing the rank function is proven to be
NP-hard, we could penalize the trace norm instead, which
is the convex envelope of the rank function. The trace norm

is defined as the sum of singular values of the matrix vari-
able [20]. We then obtain the following convex formulation:

min
W,Q

L(W,Q; f,X,Y) + λRR1(W) +
λI

N

3∑
n=1

||Q(n)||∗, (7)

where ‖.‖∗ denotes the trace norm. However, this convex
formulation penalizes every mode of tensor Q to be jointly
low rank, which may be too restricted in practice, which
may lead to suboptimal performance. Moreover, the practi-
cal way to solve the formulation in Eq. (7) is to use the alter-
nating direction methods of multipliers (ADMM) [6], which
introduces auxiliary variables and equality constraints, in or-
der to decouple the three tensor trace norm terms. However,
ADMM algorithm in practice is shown to have a slow con-
vergence rate, and less preferred when composite proximal
methods such as FISTA can be applied.

One alternative way to address these issues is to use the
latent trace norm [30, 31], which is defined as following for
a N−way tensor:

||Q||latent = inf
Q(1)+Q(2)+...+Q(N)=Q

N∑
n=1

||Q(n)

(n)||∗,

where Q(1) . . .Q(N) are a set of low-rank auxiliary tensors,
which states that the original tensor can be decomposed into
the sum of a set of tensors that are low-rank in different
modes. Finally, we proposed to drop the equality constraint
that each auxiliary tensor equal to the original one, but we
directly use the mixture of tensors to represent the original
tensor, so the problem becomes a unconstrained optimiza-
tion problem. The predictive function of task t with such
mixture is given by:

fmix(x;wt, {Q(i)}3i=1) = xTwt + xT (
∑3

i=1
Q(i)

t )x,

where Q(j) ∈ R
d×d×K , ∀j = 1, 2, 3 are the auxiliary tensors

for replacing the original tensorQ, matrixQ(j)

(j) ∈ R
(n1n2n3/nj)×nj

is the mode j unfolding of tensor Q(j), Q(j)
t ∈ R

d×d is the tth
frontal slice of tensor Q(j). Finally, our convex formulation
under embedded interaction approach is given by:

min
W,{Q(i)}3i=1

L(W,{Q(i)}3i=1; fmix,X,Y)

+ λFRF (W) + λI

3∑
j=1

||Q(j)

(j)||∗.

The convexity of this formulation holds since both the loss
function and the penalty are convex. We note that this
formulation can be solved in the same way as the formulation
in Eq. (7), and the model is much more flexible to model the
complicated interactions among the features, leveraging the
advantages of such auxiliary tensors.



4.3.2 Non-Convex Formulation
Although using proximal gradient methods we are able to

secure an optimal solution for the convex formulation, the
time complexity and storage cost are unacceptable in prac-
tice as the dimension of data increase. To see this, we note
that the proximal operator associated to a trace norm reg-
ularized objective requires singular projections [20], which
requires cubic-complexity singular value decomposition. Re-
call in each iteration of the gradient methods could involve
more than one computation of proximal operator [3], and
thus the computation may be prohibitive when dimension
grows larger. On the other hand, we have to maintain 3
dense tensors of size d× d×T which means the storage cost
is at O(d2), where T is the number of tasks and typically
we have T 	 d. Also the mixture of three low-rank aux-
iliary tensors may lead to some difficulty when it comes to
analyzing the predictive model itself.

To this end, we propose to use a tensor with a explicit low-
rank structure. Consider the interaction effects matrix Q ∈
R

d×d for one task, we assume the low-rank decomposition
Q = BQ̃BT , where B ∈ R

d×r is a basis matrix, Q̃ ∈ R
r×r

is a small matrix, capturing the information of the original
tensor under the set of bases (columns) in B. To see this, we

can expand Q =
∑r

i,j=1 Q̃(i,j)BiB
T
j , meaning the matrix Q

is a result of interactions among bases in B and also spanned
by the columns of B. We thus can use a predictive function
that explicitly considers this low-rank structure:

fnvc(x;w,B, Q̃) = xTw + xTBQ̃BTx.

When there are multiple tasks, our assumption for embed-
ded interaction approach is the shared basis, meaning B is
restricted to be same as all other tasks. The multi-task loss
function is thus given by:

L(W, {B}, Q̃; fnvc,X,Y) =
T∑

t=1

�t(fnvc,wt,B, Q̃t;Xt,Yt),

where Q̃ ∈ R
r×r×T collective denotes the set of matrices Q̃

from all tasks. This loss function is not convex because of the
multiplication of variables in xTBQ̃BTx. This loss function
leads to our final non-convex formulation for embedded:

min
W,{B},Q̃

L(W,{B}, Q̃; fnvc,X,Y)

+ λFRF (W) + λIRI({B}, Q̃),

where the regularization RI({B}, Q̃) can be Forbenius norm
or other structural information (e.g. �1 norm). The dimen-
sion r ofB can be chosen according to the need of specific ap-
plication demands, and can be selected by cross-validation.
In general, we choose r 	 d. We note that the storage com-
plexity for the feature interaction effects (e.g., tensor Q) is
reduce from O(d2K) to O(dr+ r2K), which is dramatically
smaller than the full tensor, especially in the high dimen-
sional settings. We could use the family of block coordinate
descent algorithms [32] to alternatively solve the variables

W, {B}, and Q̃, to get a local optimal solution.

5. EXPERIMENTS
In this section, we perform experiments on both synthetic

datasets and two real world datasets to evaluate the effec-
tiveness of our proposed MTIL framework.
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Figure 2: RMSE comparison between RR and STIL
on two synthetic datasets with sample size of 1k and
5k, respectively.

5.1 Synthetic Dataset
In order to justify the effectiveness of modeling the feature

interactions and MTIL framework, we test our methods on
synthetic datasets.

5.1.1 Effectiveness of modeling feature interactions
In this subsection, we test whether the interactions be-

tween features can be properly handled by adding the inter-
action term Q. To do so, we create a single task synthetic
dataset by assuming:

y = Xw + diag(XQX′) + ε, (8)

where X ∈ R
n×d is the feature matrix, y ∈ R

n×1 is the
responses, w ∈ R

d×1 is the weight vector, Q ∈ R
d×d is

a symmetric, low-rank sparse matrix, which represents the
feature interactions in the dataset, and ε ∼ N (0, 0.01In) is
the additive noise term. We generate 20 synthetic datasets
with different sizes (1000 or 1k and 5000 or 5k) and differ-
ent feature dimensions (varying from 10 to 100, stepped by
10) by randomly selecting X, w, and Q and computing y
according to Eq.(8).

We use single task feature interaction learning model (STIL)
to evaluate the effectiveness of the interaction term Q:

min
w,Q

n∑
i=1

1

2
||xT

i w + xT
i Qxi − yi||22 + λ

2
||w||22 + μ||Q||1,1,

where w ∈ R
d×1 is the weight vector, Q ∈ R

d×d is the fea-
ture interaction matrix, and ‖Q‖1,1 =

∑
i

∑
j |Qi,j | denotes

the �1,1 norm.
We compared the Root Mean Square Error (RMSE) be-

tween the Ridge Regression(RR) and STIL on both of the
synthetic datasets. As the results show in Figure 2, STIL
outperforms RR on both of the datasets, which shows the
effectiveness of modeling the feature interaction in the data.
Besides, STIL-5k (RR-5k) performs better than STIL-1k
(RR-1k), which demonstrates that the learning models will
capture the underlining models of the data better with larger
training size. Also note that with the number of dimensions
increases, STIL will gradually overfit the data, because of
the dramatic increase of the interactions between features.
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Figure 3: Synthetic dataset (Multi-task): Root
Mean Square Error (RMSE) comparisons among all
the methods. The Y-axis is RMSE, X-axis is dimen-
sion of features.

5.1.2 Effectiveness of MTIL
In order to test the effectiveness of MTIL, we generate a

multi-task synthetic data by assuming:

yt = Xtwt + diag(XtQtX
T
t ), t = 1, 2, 3, .., T,

where Xt ∈ R
n×d is the feature matrix of task t, yt ∈ R

n×1

is the responses of task t, W ∈ R
d×T = [w1,w2,w3, ...,wT ]

is the weights for tasks. As described in Section 4.3, we gen-
erate feature interaction matrix Qt = BqtB

T and project
it into a sparse, symmetric space.

In this experiment, we generate 5 datasets with different
feature dimensions from 10 to 50, stepped by 10, by ran-
domly selecting Xt, wt, B and qt.

The predictive performance of the methods outlined below
are examined on the synthetic multi-task datasets:

• Ridge Regression (RR): We choose this model as the
baseline and make neither assumptions of feature in-
teraction nor the relation among all the tasks.

• STIL: We perform STIL on each of the task indepen-
dently.

• MTL-L: This approach refers to the traditional MTL
method regularized by the trace norm of the weight
matrix W[1]. It does not make assumptions on feature
interactions.

• MTIL-L-S: This approach, refers to multi-task feature
interaction learning regularized by the trace norm of
the weight matrix W and the tensor group lasso norm
of tensor Q (see section 4.2).

• MTIL-S-S: This approach is similar to MTIL-L-S ex-
cept that the regularization term on W is �2,1 norm.

• MTIL-L-Lc: This approach refers to multi-task feature
interaction learning regularized by the trace norm of
the weight matrix W and latent trace norm of tensor
Q (see section 4.3).

• MTIL-S-Lc: This approach is similar to MTIL-L-Lc
except for that the regularization term on W is �2,1
norm.

• MTIL-L-Ln: This approach refer to multi-task feature
interaction learning regularized by the low rank norm
of tensor Q and the trace norm of the weight matrix
W (see section 4.3.2).

• MTIL-S-Ln: This approach is similar to MTIL-L-Ln
except for that the regularization term on W is �2,1
norm.

Figure 3 compares the RMSE of the above methods on
the 5 synthetic datasets. We can see that MTIL-L-Ln and
MTIL-S-Ln are not that sensitive to the change of feature di-
mensions, thanks to the low-rank assumption on the feature
interaction. Also, RR and MTL-L share a similar perfor-
mance, which is consistent with the fact that we did not as-
sume any low-rank structure in this synthetic dataset. Note
that although STIL performs almost the best on low dimen-
sional data, its performance deteriorates rapidly compared
with other MTIL methods, due to the incapability of learn-
ing the feature interactions across tasks.

5.2 School Dataset
This dataset contains the examination records of 15362

students with 28 features from 139 schools in years of 1985,
1986 and 1987, provided by the Inner London Education Au-
thority(ILEA). In this dataset, each task is to predict exam
scores for students in one out of the 139 schools. We per-
form 4 sets of experiments by varying the amount of train-
ing size, from 20% to 50% of the total sample size. We
test the approaches summarized in section 5.1.2 and tune
the parameters on λR in set [10−1, 100, ..., 109, 1010]. For
MTIL-L-Ln and MTIL-S-Ln methods, the rank of matrix
r for each task are tuned in [2, 3, ..., 19, 20]. For MTIL-L-S
and MTIL-L-Lc, we tune the regularization parameters λI

in [10−1, 100, ..., 109, 1010].
The experimental results are shown in Table 2. First, for

most of the methods, RMSE will decrease when the train-
ing size increases. This means that providing more data
in the training set will help overcome the overfitting prob-
lem. Also, we found that the performance of embedded
feature approaches (i.e. MTIL-L-Lc, MTIL-L-Ln, MTIL-S-
Ln) are worse than the single task learning approach. The
reason behind this is that embedded feature approaches do
not have sparse constraints on the interaction term, which
will severely overfit the data when there is not sufficient
training samples. Additionally, the MTL-L and MTIL-L-S
obtain better performance than single task learning, which
indicates that the low-rank structure shared by tasks are
effectively captured by the low-rank assumption in these
two methods. Moreover, MTIL-L-S method outperforms all
other methods, which empirically proves the effectiveness of
learning the shared interactions with sparse constraints.

5.3 Modeling Alzheimer’s Disease
The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database(adni.loni.ucla.edu), which was launched in 2003 as
a 5-year public-private partnership, is aimed to test whether
the positron emission tomography (PET), serial magnetic
resonance imaging (MRI), other biological markers, and clin-
ical and neuropsychological assessments can be combined to
measure the progression of mild cognitive impairment (MCI)
and early Alzheimer’s disease (AD). We follow the procedure
of preprocessing mentioned in [39] and obtain 648 subjects
and 305 MRI features. The parameters are tuned in the
same way as we described in 5.2.



Table 2: Performance comparison of competing methods on the School dataset in terms of RMSE. The MTIL-
L-S method consistently outperforms all other methods, showing the effectiveness of the shared interactions.

Training 20% Training 30% Training 40% Training 50%
RR 0.9149 ± 0.0031 0.9025 ± 0.0058 0.8885 ± 0.0067 0.8722 ± 0.0059
STIL 0.9149 ± 0.0031 0.9025 ± 0.0057 0.8885 ± 0.0067 0.8721 ± 0.0058
MTL-L 0.8998 ± 0.0044 0.8807 ± 0.0052 0.8657 ± 0.0032 0.8503 ± 0.0070

MTIL-L-S 0.8623 ± 0.0048 0.8506± 0.0038 0.8511±0.0043 0.8404 ± 0.0067
MTIL-S-S 0.8999 ± 0.0063 0.8907 ± 0.0049 0.8832 ± 0.0077 0.8686 ± 0.0046
MTIL-L-Lc 0.9252 ± 0.0090 0.8893 ± 0.0037 0.8859 ± 0.0037 0.8720 ± 0.0044
MTIL-S-Lc 0.9353 ± 0.0133 0.9139 ± 0.0053 0.8941 ± 0.0024 0.8761 ± 0.0062
MTIL-L-Ln 1.0084 ± 0.0180 0.9758 ± 0.0097 0.9328 ± 0.0267 0.9041 ± 0.0140
MTIL-S-Ln 1.0026 ± 0.0368 0.9585 ± 0.0059 0.9297 ± 0.0253 0.8965 ± 0.0066

Table 3: Performance comparison of different meth-
ods on the ADNI dataset in terms of RMSE. All of
the MTLs outperform the single task learning ap-
proaches (RR and STIL) and MTIL-S-Lc method
outperforms all other methods, which demonstrates
the effectiveness of embedded feature interactions.

RMSE ± standard deviation
RR 0.9418 ± 0.0023
STIL 0.9417 ± 0.0021
MTL-L 0.9031 ± 0.0007
MTIL-L-S 0.9030 ± 0.0007
MTIL-S-S 0.9162 ± 0.0017
MTIL-L-Lc 0.8941 ± 0.0050
MTIL-S-Lc 0.8909 ± 0.0059
MTIL-L-Ln 0.8926 ± 0.0009
MTIL-S-Ln 0.9085 ± 0.0028

The RMSE comparison result is shown in Table 3. First,
we found that all of the MTLs outperform the single task
learning approaches (RR and STIL), which demonstrates
the effectiveness of learning multiple tasks jointly by explor-
ing the relatedness between tasks, as well as the existence
of the underlying relatedness between tasks in the ADNI
dataset. Second, the RMSE results of MTIL-L-S and MTL-
L are comparable with each other, which indicates that the
multiple tasks in this dataset do not share the same fea-
ture interaction structure. Finally, the result of MTIL-S-Lc
method outperforms all other methods, which shows superi-
ority of our feature interaction framework. Through a mix-
ture of 3 low-rank tensor, we are able to learn the feature
interaction pattern in this dataset.

5.4 Discussion
The proposed multi-task feature interaction learning frame-

work has provided us a way to bridge related tasks using
interaction effects. By employing different types of regular-
izations on the interaction effects tensor, the formulations
under this framework have very different characteristics.

For the shared interaction approach: we utilize Group
Lasso on the interaction tensor to control the model com-
plexity. The proximal operator admits a closed form solu-
tion, and thus the overall computational cost is very low.
We are able to obtain interpretable results from the model,
showing what are important interactions that are relevant to
the prediction tasks. The main drawback is that we assume
all tasks share the same set of interaction effects, which may
not be the case for many data sets. One way to further
improve the formulation is by extending the strong or weak
heredity properties [5, 23] to the proposed MTIL framework.

For the embedded interaction approach: we can easily ob-
tain the global optimal for the convex formulation. Though
we are able to tune the regularization parameter on the trace
norms to control the rank of the interaction tensor, it is usu-
ally very hard to decide the value unless cross-validation is
used. A rank larger than necessary may lead to over-fitting
when training samples are insufficient. On the other hand,
the obtained mixture of 3 tensor is hard to interpret. The
non-convex formulation provides a better model decompo-
sition, from which we can see the combination of basis for
different tasks and identify embedded bases that are shared
among the set of tasks. The drawback of this formulation
is that we may easily trapped in a bad local optimal unless
we carefully choose the initial value (e.g., using the solution
from the convex formulation).

In general, this framework can be generalized into many
other possible relatedness on feature interactions by incorpo-
rating different regularization terms. Different approaches of
this framework should be carefully chosen according to the
application domain. In the future work we plan to study
the statistical properties of the proposed model, which may
lead to deeper understanding of these interaction models.

6. CONCLUSIONS
One major limitation of linear models is the lack of capa-
bility to capture predictive information from interactions
between features. While introducing high-order feature in-
teraction terms can overcome this limitation, this approach
tremendously increases the model complexity and imposes
significant challenges in the learning against overfitting. In
this paper, we proposed a novel Multi-Task feature Inter-
action Learning (MTIL) framework to exploit the task re-
latedness from high-order feature interactions, which pro-
vides better generalization performance by inductive trans-
fer among tasks via shared representations of feature inter-
actions. We formulate two concrete approaches under this
framework and provide efficient algorithms: the shared in-
teraction approach and the embedded interaction approach.
The former assumes tasks share the same set of interactions,
and the latter assumes feature interactions from multiple
tasks come from a shared subspace. We have provided effi-
cient algorithms for solving the two approaches. Extensive
empirical studies on both synthetic and real datasets have
demonstrated the effectiveness of the proposed framework.
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