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Abstract
Medical predictive modeling is a challenging problem
due to the heterogeneous nature of the patients. In or-
der to build effective medical predictive models we need
to address such heterogeneous nature during modeling
and allow patients to have their own personalized mod-
els instead of using a one-size-fits-all model. However,
building a personalized model for each patient is com-
putationally expensive and the over-parametrization of
the model makes it susceptible to the model overfit-
ting problem. To address these challenges, we propose
a novel approach called FactORized MUlti-task LeArn-
ing model (Formula), which learns the personalized
model of each patient via a sparse multi-task learning
method. The personalized models are assumed to share
a low-rank representation, known as the base models.
Formula is designed to simultaneously learn the base
models as well as the personalized model of each patien-
t, where the latter is a linear combination of the base
models. We have performed extensive experiments to
evaluate the proposed approach on a real medical data
set. The proposed approach delivered superior predic-
tive performance while the personalized models offered
many useful medical insights.

1 Introduction
Predictive modeling has become an integral componen-
t of many industries to deliver accurate predictions for
various purposes, such as decision making and risk man-
agement. With the growing development and availabil-
ity of electronic medical records (EMR), the practition-
ers in many clinical decision support and care man-
agement systems resort to leveraging patients’ medi-
cal records to perform various predictive modeling tasks
for risk predictions and disease analysis. Moreover, in
many clinical and pharmaceutical researches, predictive
models such as disease progression models are used to
study the pathologies of disease and evaluate the effec-
tiveness of treatments, given the historical observations
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and medical records [4]. In the study of Alzheimer’s dis-
ease (AD), for example, various predictive models are
designed to study the courses of the disease and its pro-
gression patterns, to identity sensitive biomarkers that
signal progression of the disease, and to build accurate
models that identify high risk patients [25, 26].

Compared to standard data mining and machine
learning applications, medical predictive modeling is e-
specially challenging due to the heterogeneous nature
of the patients. The heterogeneity arises from multiple
factors: first of all, although some patients have similar
phenotypes according to their health records, their med-
ical conditions may vary. For example, in the study of
dementia, patients with similar cognitive impairments
may have different pathological causes. Another exam-
ple is the study of heart failure (HF), where HF may
be caused by coronary artery disease, hypertension, im-
paired glucose tolerance, and other factors [12, 16]. Sec-
ondly, it is well acknowledged that patients with the
same disease may progress differently [17]. As such, one
should address the heterogeneity of the patients in order
to build accurate medical predictive models. It is widely
accepted that building personalized models [15] is key
to solving the problem, taking the inherent variability
of the patients into account.

One simple way to implement the personalized
models is to build a separate model for each patient
independently. However, there are several drawbacks
of this ‘fully personalized’ approach: First, it is not
efficient in terms of time and space complexity. The task
of building the personalized models is expensive and
storing them is infeasible when the number of patients is
large. More importantly, this approach requires solving
a predictive modeling problem with a huge number of
parameters. Because we have only limited amount of
training data, such models are likely to severely overfit
the data and result in models with poor generalization
performance.

Instead of building a different model for each pa-
tient, an alternative approach is to consider the simi-
larity of the patients. Specifically, a two-stage model-
ing is performed—grouping the patients first based on
their similarities and then building a separate model



for patients in each group independently. This includes
methods such as locally weighted learning [2] and lo-
calized support vector machine (LSVM) [9]. Locally
weighted learning is a lazy learning scheme, in which
the learning procedure only starts when the testing is
performed. This approach would find the neighbors of
the test instance, forming a group centered at the in-
stance. It then builds a predictive model based on the
training instances in the group. LSVM [9] is another
approach, where supervised clustering is initially per-
formed to group the training instances. It then trains
a local SVM model for each cluster independently. One
potential limitation of the two-stage approach is that
the training of a model for patients within each group
does not utilize potentially valuable information about
patients from other groups since the grouping and mod-
el building steps are carried out separately. In addition,
the approach is not exactly personalized since all the
patients that belong to the same group have the same
predictive model.

To address these limitations, this paper introduces
a novel approach called FactORized MUlti-task LeArn-
ing model (Formula). Formula learns a personalized
model for each patient in a tractable way by assuming
the models share a low-rank representation, known as its
‘base models’. The personalized model for each patient
is a linear combination of a few of these base models.
The base models can be regarded as features character-
izing the underlying groups of the data while the coeffi-
cients of these base models denote memberships of the
patients in these groups. To ensure the robustness of
Formula, we enforce sparsity in both the ‘base mod-
els’ as well as the combination coefficients. As a result,
each base model involves only a few relevant features,
while each personalized model is a linear combination
of only a few base models. Formula also enforces a
graph Laplacian regularization to ensure that the per-
sonalized models for similar patients should be close to
each other.

In short, the main contributions of this paper are
summarized below:

• We proposed a novel personalized medical model
called Formula. Instead of building a single
model for all the patients or applying a two-stage
modeling, Formula extracts the base models of
the patients and uses a linear combination of these
models as the personalized model of a patient.

• We employed a sparse matrix factorization formu-
lation to perform base model selection for each pa-
tient and feature selection for each base model.

• We designed an efficient optimization method to
solve this non-convex problem.

• We evaluated Formula on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database. The ex-
perimental results show the superiority of Formu-
la over other baseline methods.

The remainder of this paper is organized as follows.
A brief review of the related works is given in Section
2. In Section 3.1, we formalize the problem of learning
personalized models. The proposed Formula approach
is introduced in Section 3.2. We solve its correspond-
ing optimization problem in Section 3.3. Section 4 e-
valuated the performance of Formula on a real world
dataset. Finally, we conclude the paper in Section 5.

2 Related Works
As mentioned in Section 1, in order to avoid learning one
model for each patient (data point), we might consider
either locally weighted learning, or two-stage learning
methods, such as clustering plus multi-task learning. In
this section, we are going to review locally weighted
learning and multi-task learning.

2.1 Locally Weighted Learning Locally weighted
learning is categorized as lazy learning method [2],
in which the model is learned only when the testing
data point comes. Locally weighted learning has been
imbedded into various kinds of fundamental approaches,
such as locally weighted regression [2], localized SVM
[9], etc. The drawback of locally weighted learning is
that it needs to build one model for each testing data
points [22]. To address this drawback, localized SVM
proposed an efficient learning method by first clustering
the training data points into different groups and then
building an SVM for each group. However, localized
SVM need to take into consideration all the testing
data points in advance to do the clustering over the
training data samples, but usually the testing data set
might not be available in advance. Also it does not
address the problem when a new testing point becomes
available, whether the method will retrain all the models
using all available testing points, or just use the already
generated models for each group. As mentioned earlier,
localized SVM is a two-stage model and it builds models
independently between groups. Formula is different
from locally weighted learning in that it benefits from
learning the group and the models simultaneously, and
also considers the relations between groups implicitly.

2.2 Multi-Task Learning (MTL) Multi-task
learning [6] is a methodology designed to improve
predictive performance that learns different tasks
simultaneously by taking into consideration the re-
lations between tasks. The key difference between



various MTLs lies in the way how they define the task
relations. For example, the task relationships can be
modeled using a common prior within a hierarchical
Bayesian framework [3, 21], or using different kinds
of regularization techniques, such as Mean-regularized
MTL [11], low-rank regularized MTL [8], MTL with
joint feature learning [28, 23], etc. Multi-task learning
has also been used for feature learning and selection [1]
or temporal learning [28, 20] by considering each time
point as one task. An open-source multi-task learning
software package MALSAR [24] has been developed
to include efficient solvers for many state-of-the-art
multi-task learning algorithms. As the second stage
in the two-stage modeling scheme, multi-task learning
can explicitly consider the relations between different
groups/tasks. Although they can utilize the relations
between tasks, the relations are mostly predefined. If
the predefined task relations do not reflect the true
underline relation, the performance will be degener-
ated. In this paper, we can address this problem by
incorporating task relations implicitly, and identify the
tasks and learn the task models simultaneously.

3 Learning Personalized Model via FORMULA
In this section, we formally introduce the problem of
learning personalized models. We then discuss the
technical challenges of the problem, which motivate the
proposed Formula approach. Finally, we discuss how
the problem can be efficiently solved.

3.1 Problem Formulation In a typical predictive
modeling setting, we are given a feature vector and a
target variable for each data point. Our goal is to learn a
model that predicts the value of the target variable given
its feature vector. In the context of medical predictive
modeling, the features can be extracted from various
sources, including historical medical records or medical
images. The target variable can be binary-valued, such
as the onset of a certain disease, or continuous-valued,
such as the cognitive score of a patient.

Let D = {(x1, y1), . . . , (xN , yN )} denote a collection
of N training samples, where each sample is character-
ized by a D-dimensional feature vector, xi ∈ RD, and
a target response1 yi ∈ ℜ. We assume that the target
can be approximated by a linear combination of the fea-
tures, i.e., yi = wT

i xi + ϵi, where wi is the parameter
vector associated with the i-th training sample and ϵi

is the Gaussian noise term. Since we are seeking for
personalized models, the parameters wi are unique for
each sample and are estimated by solving the following

1In this paper, we focus on the regression problem.

optimization problem:

min
W

∑N

i=1
ℓi(xi, yi; wi)(3.1)

where ℓi(xi, yi; wi) is the loss function for sample i. For
brevity, we use the notation W = [w1, ..., wN ] ∈ RD×N

to denote the model matrix.
Since there are D × N parameters that must be

estimated from the N training samples, this leads to an
underdetermined system of linear equations, which has
either no solution or infinitely many solutions. The over-
parameterization of the model also makes it susceptible
to model overfitting. To overcome these problems, the
number of effective parameters must be significantly
reduced. One way to achieve this is by identifying
groups of similar samples and then build a separate
model for each group. Let G = {π1, π2, · · · , πK} denote
the set of K groups, where πj denote the set of samples
assigned to the j-th group. The problem of learning
personalized models for each group can be formalized
as follows:

min
W,G

∑
πj∈G

∑
(xi,yi)∈πj

ℓi(xi, yi; wj)(3.2)

The optimization problem can be solved using a two-
stage approach, where the group membership informa-
tion is initially obtained by applying clustering tech-
niques such as k-means. Once the clusters are found, a
personalized model is derived for each cluster by solving
the inner summation term of the objective function giv-
en in (3.2). However, since the clustering is performed
independently of the predictive modeling step, this may
lead to suboptimal performance as the construction of
the model for each group does not utilize information
from other groups. The multi-task learning approach to
be described in the next section is designed to overcome
this problem by solving the clustering and predictive
modeling steps jointly in a unified learning framework,
thus supporting knowledge transfer among the clusters.
In addition, to improve robustness of the predictions,
additional sparsity constraints were imposed to further
reduce the number of effective parameters that the mod-
els depend upon.

3.2 The Proposed FORMULA Framework This
section presents the proposed Formula approach,
which considers the development of personalized model
for each patient as a single learning task. Unlike the
two-stage approach given in Equation (3.2), Formu-
la assumes the learning tasks are related. It therefore
simultaneously learns the related tasks and utilize the
shared information among tasks to improve its overall
predictions.



We achieve these goals by incorporating regulariza-
tion terms into the personalized model formulation giv-
en in (3.1):

(3.3) min
W

L(X, y; W ) + R(W )

where L(X, y; W ) =
∑N

i=1 ℓi(xi, yi; wi) is the loss
function and R(W ) is the regularization term, which
encodes our modeling assumptions. To start with,
we consider the following modeling assumptions of our
formulation:

• Model Clustering. One of the key assumption-
s behind our proposed approach is that the pre-
dictions of the target variables are governed by a
set of K base models, which are collectively repre-
sented by the matrix U ∈ RD×K = [u1, . . . , uK ],
where each base model is represented by a colum-
n vector ui ∈ RD. We further assume that each
personalized model wi is represented by a linear
combinations of the base models, i.e., wi = Uvi =∑K

j=1 ujvij , where vi ∈ RK is a vector denot-
ing the coefficients of the linear combination, and
V ∈ RK×N = [v1, . . . , vN ]. This assumption can
be enforced by requiring the model matrix W to be
as close as possible to the product of two matrices,
i.e., W = UV .

• Sparse Personalized Models. Depending on
the nature of the data, the number of base models
can be potentially large. However, the personalized
model of each individual patient is assumed to be
a linear combination of only a few base models. In
other words, the number of non-zero elements in V
should be as few as possible. This can be achieved
by enforcing a sparse-inducing norm on the matrix
V . In addition, to ensure interpretability of the
cluster assignment, the elements in V should be
non-negative.

• Sparse Base Models. Each base model should
be characterized by only a few relevant features,
to ensure the model is robust to noise. A sparse-
inducing norm can be applied to U to obtain the
sparse base models.

• Local Smoothness and Recovery. Although
each patient has its own personalized model, we
assume the models for patients with similar phe-
notypes should be close to one another. Such a
model smoothness criterion is helpful to infer the
personalized model of a test patient by assuming it
is similar to the weighted average of the personal-
ized models for its neighbors. This can be achieved
by incorporating a graph Laplacian regularization
term into the proposed formulation.

Based on the preceding assumptions, the objective
function of Formula is given by:

min
W,U,V

1
2

∑N

i=1
ℓi(xi, yi; wi) + λ1∥V ∥1 + λ2∥U∥1(3.4)

+ λ3

2
∥W − WL∥2

F

s.t. V ≽ 0, W = UV

where V ≽ 0 denote all elements in V must be non
negative and L ∈ RN×N is the similarity matrix
between the training instances. The parameters λ1, λ2,
and λ3 control the tradeoffs among the various terms of
the objective function. The last term in the objective
function, ∥W − WL∥2

F , enforces the local smoothness
constraint on the wis. Note that L must be normalized
such that the sum of each row or column is equal to
1. The number of base models K is assumed to be
predefined by the user.

3.3 Optimization This section describes how to
solve the optimization problem for our proposed frame-
work. In this work, we consider a squared loss func-
tion for regression problems, i.e., ℓi(xi, yi; wi) = (yi −
wT

i xi)2. However, the optimization strategies used in
this paper can also be applied to other loss functions.
The objective function for Formula with squared loss
is given by:

min
W,U,V

1
2

∑N

i
(yi − wT

i xi)2 + λ1∥V ∥1

+ λ2∥U∥1 + λ3

2
∥W − WL∥2

F

s.t. V ≽ 0, W = UV

We can simplify the problem by replacing W with
the matrix product UV in the objective function, i.e.,
wi = Uvi. This reduces the objective function to the
following expression:

min
U,V

1
2

∑N

i
(yi − vT

i UT xi)2 + λ1∥V ∥1(3.5)

+ λ2∥U∥1 + λ3

2
∥UV − UV L∥2

F

s.t. V ≽ 0

Thus, we only need to solve for U and V , and
do not need to store the D × N matrix W . Similar
to [7, 27], we propose to use the Block Coordinate
Descent (BCD) algorithm to obtain a locally optimal
solution. Specifically, we iteratively solve for U and V
by fixing one of them to be constant, until the algorithm
converges. Below we explain how each step can be
solved efficiently.



Solve U , given V . The objective function becomes

min
U

∑N

i
(yi − vT

i UT xi)2 + λ2

2
∥U∥1 + λ3

2
∥UA∥2

F

where A = V (I − L). This is an ℓ1-regularized convex
optimization problem, which can be efficiently solved
using projected gradient methods, such as spectral
projected gradient[19], by considering the gradient of
the smooth part of the objective function. Here, the
gradient of the smooth part w.r.t. U is given by,∑N

i=1

(
−yixivT

i + xixT
i UvivT

i

)
+ λ3UAAT

Solve V , given U . The objective function becomes

min
V

1
2

∑N

i
(yi − vT

i x̃i)2 + λ1∥V ∥1 + λ3

2
∥UV B∥2

F

where x̃i = UT xi and B = I − L. The problem can
be solved in a similar way. The gradient of the smooth
part of the objective function w.r.t. V is given by,

P + Q + λ3UT UV BBT(3.6)

where Pi,j = −yix̃i,j , or Pi· = −yix̃i; Qi· = x̃ix̃T
i vi,

and vi is the i-th column of V .

4 Experimental Evaluation and Results
We have performed extensive experiments to evaluate
the performance of Formula.

4.1 Dataset Our experiments were performed on the
ADNI dataset2, which contains images from MRI scans
(M) and PET scans (P), as well as CSF measurements
(C) and cognition-related clinical measurements such as
Mini Mental State Examination (MMSE) scores and
Alzheimer’s Disease Assessment Scale-cognitive sub-
scores (ADAS-Cog). ADNI is a longitudinal project, in
which the measurements are collected repeatedly over a
6-month or 1-year interval. We call the time point when
the patient came to the hospital for screening as base-
line. The time point when the patient came to the hos-
pital for evaluation is determined based on the elapsed
time since the initial baseline. For example, M06 de-
note the time point 6 months after the first visit. There
are altogether 5 time points, designated as M06, M12,
M24, M36 and M48, respectively. We consider the sam-
ples collected for each time point as a separate data set.
The sample sizes for the five data sets are shown in Ta-
ble 1. Note that the data sets decrease in size due to
the drop out of some patients for various reasons.

2Available at http://adni.loni.ucla.edu

Table 1: Dataset size of ADAS-Cog and MMSE

M06 M12 M24 M36 M48
ADAS-Cog 648 638 564 377 85

MMSE 648 642 569 389 87

The features of each data set include those from
M, P, C and META (E), which denote additional
features other than M, P and C. The detailed list of
the META features is given in [28]. We consider using
these features to build models for predicting the ADAS
cognitive scores or MMSE scores on each data set.

4.2 Baseline Algorithms We compared the perfor-
mance of Formula against the following baseline meth-
ods.

• Single model(SM): This is a one-size-fits-all ap-
proach, assuming there is no inherent groupings in
the data. We applied ridge regression to construct
a single model for each data set.

• Clustering + single task model with Ridge regres-
sion(CSTR): In this baseline algorithm, we first ap-
ply k-means clustering to generate k clusters. We
then build a ridge regression model for each cluster.

• Clustering + single task model with Lasso regres-
sion(CSTL): This approach is similar to CSTR ex-
cept we use Lasso regression to build the model
instead of ridge regression.

• Clustering + sparse low rank mutli-task learning
(CSL) [8]: First we cluster the data using k-means
to generate k clusters, and then treat each cluster as
a task to learn a multi-task model. Here we assume
that all models share a low-rank representation
in addition to a sparse property. The objective
function for CSL is given by [8],

min
W

∑k

i=1
∥Xiwi − yi∥2

2 + γ∥P∥1

s.t. W = P + Q, ∥Q∥∗ ≤ τ

where W ∈ RD×K and W = [w1, ..., wk]. We use
the implementation in MALSAR [24]to solve CSL.

• Clustering + mean regularized multi-task learning
(CMR) [11]: In this baseline algorithm, we first
cluster the data using k-means into k clusters which
are considered as k tasks. We consider a special
task relation for the multi-task learning. The
assumption is that the models for all tasks are close
to their mean model. The objective function is



given below.

min
W

∑K

i=1
∥Xiwi − yi∥2

2 + ρ1
∑K

i=1
∥wi∥2

2

+ ρ2
∑K

i=1

∥∥∥∥wi − 1
K

∑K

s=1
ws

∥∥∥∥2

2

We use the implementation in MALSAR [24]to
solve CMR.

4.3 Evaluation Method Each data set is parti-
tioned into a training set, which contains 80% of the
data points, and a test set, which contains the rest of the
data. For SM, because there is only one model for the
entire data set, we can apply the derived model directly
on the test set for evaluation. For the two-stage meth-
ods (CSTR, CSTL, CSL and CMR), when the test data
point becomes available, we first find the nearest cluster
of each test point and apply its corresponding model to
make the prediction. As previously mentioned, in For-
mula, the personalized model W are estimated for the
training data only. For testing, we use the weighted av-
erage model of the nearest neighbors of each test point.
Formally, the personalized model for the test point xi
is:

wi =
∑T

j=1

si,j∑T
n=1 si,n

wj ,

where T is the number of nearest neighbors of xi. We
set T = 5 in our experiments. si,j is the similarity
between xi and xj . Here, si,j is calculated using the
Gaussian radial basis function. The model performance
is evaluated based on its mean of squared error (MSE).

4.4 Experimental Results The experimental re-
sults are summarized in Table 2. The results suggest
that Formula outperforms other baselines in 6 out of
10 data sets and is consistently one of the top two algo-
rithms for all the data sets. In the 6 data sets in which
Formula has the lowest MSE, its average improve-
ment over the second best performer is more than 6%.
In ADAS-Cog M36 and MMSE M12, the performance
of Formula is almost the same as the top performer-
s. Comparing Formula against CSL and CMR, even
though all three methods are multi-task learning algo-
rithms, Formula outperforms the other two consistent-
ly on all the data sets. The reason is that by learning
the clusters and models simultaneously, Formula can
utilize more information in the learning process. Com-
paring CSTR/CSTL against CSL/CMR, observe that
their performances are quite similar. However, there
are several cases where CSTL outperforms CSL/CMR,
which might be due to the inaccurate assumption of the
task relations in the multi-task learning formulation.

In addition, it is worth noting that the performance
for all the methods degrade from M06 to M48. This
is because the sample size decreases over time, which
makes the methods more susceptible to underfitting
their models with inadequate data points.

4.5 Sensitivity Analysis Since there are four pa-
rameters that must be tuned, namely, λ1, λ2, λ3, and
K, we need to analyze the sensitivity of the models to
changes in the parameter values. By varying the value
of one parameter and keeping the other three parame-
ters constant, the sensitivity analysis results for λ1, λ2,
λ3, and K are shown in Figure 1. From Figure 1, we can
see that the model is quite robust to changes in these
parameter values. Nonetheless, in general, λ1 prefers
larger values (see Figure 1a) whereas λ2 prefers smaller
ones (see Figure 1b). The model is also not that sensi-
tive to changes in λ3 and K (Figure 1c, 1d) within the
range of parameter values investigated.

4.6 Model Analysis One of the most attractive
feature of the proposed model is that it learns a set
of base models from the training data, where each
base model corresponds to a column of the matrix U .
The personalized models can be represented by a linear
combination of these base model. In this section, we
first investigate the base models obtained from the best
solution in the last section and then analyze how each of
the base models contribute to the personalized models.
Base Models. In both ADAS-Cog and MMSE dataset-
s, the rank of the best models obtained is 3. We sort the
features in each base model and rank them according to
their contribution. The top features for each base mod-
el in ADAS-Cog and MMSE are shown in Table 3 and
Table 4, respectively. We observe that the top features
in the base models look very different from each other.
Due to the progression of Alzheimer’s disease, it will
eventually affect almost all parts of the brain. One pos-
sible explanation of these heterogeneous models is that,
the patients may be at different stages of the disease,
and at different stages, the contribution from the base
model differs.

In the Base Model A of the ADAS-Cog task (Ta-
ble 3), the leading feature is the cortical thickness aver-
age of the right lateral Occipital. The relationship be-
tween occipital and AD was studied by previous work-
s [18, 5], and found to be significant in the advanced
AD patients. In both Base Model B and Base Model C,
the leading feature is the cortical thickness average of
the left middle temporal gyrus, which is an important
area in the Temporal lobe, connected to multiple cog-
nitive functions, such as accessing word meaning while
reading. The area is found to be the first temporal lobe



Table 2: Comparison the MSE between Formula and baseline methods

MSE ADAS-Cog MMSE
M06 M12 M24 M36 M48 M06 M12 M24 M36 M48

SM 0.497 0.553 0.758 0.893 2.153 0.237 0.331 0.420 0.536 1.202
CSTR 0.469 0.637 0.879 0.985 1.543 0.246 0.329 0.392 0.493 0.747
CSTL 0.448 0.558 0.817 0.907 1.416 0.205 0.264 0.287 0.364 0.954
CSL 0.555 0.695 0.869 0.981 1.524 0.247 0.335 0.383 0.470 0.821
CMR 0.545 0.625 0.860 0.978 1.524 0.242 0.319 0.362 0.420 0.786
Formula 0.424 0.545 0.764 0.899 1.520 0.197 0.267 0.262 0.347 0.673
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Figure 1: Sensitivity Analysis of Formula. Test is performed on ADAS-Cog M06 dataset.

neocortical sites affected in AD [10]. As such, these two
models may relate to early predictive patterns of AD.
We also find that in Base Model B, the effects of Left
Entorhinal is higher than White matter volumn of the
left Hippocampus, while in the Base Model C the pat-
tern is reversed. The two models may indicate different
progression patterns in early stage AD patients.

In the base models obtained in MMSE task (Ta-
ble 4), we find that the leading features have different
patterns. In Base Model A, the leading feature is the av-
erage cortical thickness of the inferior parietal. The area
of inferior parietal is related to the progression of AD in
several studies. In [14], the authors find its metabolism
decreased early in the course of AD. The leading feature
in Base Model B is the cortical parcellation volume of
right precentral. The precentral gyrus is found to be
significant in voxel analysis [13]. In Base Model C, the
volume of left hippocampus dominates other features.
This feature is considered as one of the most significant
biomarkers of AD.
Contribution to Personalized Models. As we have
learned heterogeneous base models for both tasks, it is
interesting to see how each of the models contribute to
the personalized models. Since both models are at rank
3, we are able to plot the coefficients in V using a 3-
dimensional coordinator system. For each point, the
value at an axis means how much the corresponding
base model contributes to its personalized model. The
scatter plots of the contributions are given in Figure 2.
We are able to find very interesting patterns in these
plots.

In Figure 2.a, the size of the marker is propotion-

Table 3: Base Models for the ADAS-Cog task

Base Model A
CTA:R.Lateral Occipital 1.366
V-CP:R.Caudal Middle Frontal 1.287
SA:L.Middle Temporal 1.272
CTA:L.Middle Temporal 1.122
CTA:L.Rostral Middle Frontal 1.104
CTA:R.ParsTriangularis 0.966

Base Model B
CTA:L.Middle Temporal 2.467
CTA:R.Rostral Middle Frontal 1.907
CTA:L.Entorhinal 1.726
V-WM:L.Hippocampus 1.523
SA:L.Middle Temporal 1.193
V-CP:R.Caudal Middle Frontal 1.168

Base Model C
CTA:L.Middle Temporal 2.042
V-WM:L.Hippocampus 1.949
SA:L.Middle Temporal 1.843
CTA:L.Entorhinal 1.722
CTA:R.Rostral Middle Frontal 1.587
V-CP:R.Sup.Temporal 1.323

al to the value of ADAS-Cog score. Note that lower
ADAS-Cog values indicate better cognitive functionali-
ty, i.e., cognitive normal patients have smaller markers
in the plot. First of all, we see that only a few patients
have (7 patients with only base model A, 31 patients
with B, and 13 patients with C), and it is not hard
to find out that these patients are characterized by high
ADAS-Cog scores. We are able to see boundaries among
different groups of patients (patient with only one base



Table 4: Base Models for MMSE task

Base Model A
CTA:L.Inf.Parietal 0.210
CTA:L.Middle Temporal 0.175
CTA:L.Lateral Occipital 0.167
CTA:L.Inf.Temporal 0.163
CTA:L.Sup.Parietal 0.159
V-WM:L.Hippocampus 0.153

Base Model B
V-CP:R.Precentral 0.149
V-CP:L.Sup.Frontal 0.147
V-CP:R.Tra.Temporal 0.137
V-CP:R.Lingual 0.136
V-CP:R.Sup.Frontal 0.128
V-CP:L.Inf.Temporal 0.120

Base Model C
V-WM:L.Hippocampus 0.216
SA:L.Pericalcarine 0.169
SA:R.Rostral Middle Frontal 0.167
V-CP:R.Rostral Middle Frontal 0.164
SA:L.Hemisphere 0.159
SA:L.ParsTriangularis 0.151

model, patients with two base models, and those with
three base models). This is probably because that due
to the ℓ1 thrinkage effects, small contributions turn to
zeros. We are able to see much more patients with lin-
ear combinations of base model B and C (112 patients in
total), as compared to other two groups (39 patients for
A and B, 36 patients for A and C). And we also notice
the personalize models for most patients (280 patients
in total) are linear combination of three base model.

The results for MMSE M06 task is given in Fig-
ure 2.b, in which the size of the marker is propotional to
the value of the patient’s MMSE score. Cognitive nor-
mal patients usually have higher MMSE scores, which
means smaller markers indicates patients affected more
by Alzheimer’s. We are able to see that the personal-
ized models for the largest population are linear combi-
nation of the three models (230 patients). Only a few
patients lie on the axises (16 patients for base model
A, 32 for B, and 27 for C) and those patients usually
have smaller MMSE values as compared to the rest of
population. Considering the difference between ADAS-
Cog and MMSE, i.e., healthy patients typically have low
ADAS-Cog score and high MMSE score, the finding in
Figure 2.a and Figure 2.b are consistent: the models
for patients with advanced Alzheimer’s are more likely
to be singleton (and heterogeneous). Also, the findings
in this paper are consistent with our assumption that
predictive models of the patients are not homogeneous,
and for different set of patients, the models should be
different.

a) ADAS-Cog

b) MMSE

Figure 2: Model contributions for personalized models.

There are many other interesting findings we have,
for example, the patterns of different latent modality
over the course of progression of Alzheimer’s. We leave
a complete analysis to future publication.

5 Conclusion
Personalized modeling for medical use is one of the e-
merging research topics in machine learning and data
mining area, and there are many challenges associated
with it. To address these challenges, we propose a nov-
el FactORized MUlti-task LeArning model (Formula)
to learn low-rank personalized models, leveraging the
shared information among patients. Specifically, the
proposed approach learns a personalized model for each
patient, assuming the models share a low-rank repre-
sentation. The personalized models are computed as
linear combinations of a few base models. Our experi-
mental results on the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data set suggest that the proposed
approach is superior than several baseline methods and
provide many valuable medical insights.
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