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Abstract—Frequent closed pattern mining has been developed
for decades, mostly on a two dimensional matrix. This paper
addresses the problem of mining high (≥ 3) dimensional frequent
closed patterns (nFCPs) from dense binary dataset, where the
dataset is represented by a high dimensional cube. As existing
FP-tree or enumeration tree based algorithms do not suit for
n-dimensional dense data, we are motivated to propose a novel
algorithm called HDminer for nFCPs mining. HDminer employs
effective search space partition and pruning strategies to enhance
the mining efficiency. We have implemented HDminer, and the
performance studies on synthetic data and real microarray data
show its superiority over existing algorithms.

Keywords—HDminer; Frequent Pattern Mining; High Dimen-
sional Data

I. INTRODUCTION

Frequent pattern mining [1], [2], [3], [4] has a wide
application to many data mining tasks, including association
analysis, correlation analysis, causality analysis, association-
based classification and clustering. However, the number of
frequent patterns are too large for users to digest. To reduce
the number of frequent patterns (FPs), frequent closed pattern
(FCP) mining [5] has been proposed to deliver the same
information as the FPs, which has been successfully adopted
for many data analysis tasks.

Given a 2D boolean Matrix O = R × C (shown in
Table I), where the row set R = {r1, r2, . . . , rn} and the
column set C = {c1, c2, . . . , cm}, a true value Oij = 1
denotes the “containing/contained” relationship between row
ri and column cj ; and a false value otherwise. A pattern
f = (R′ × C ′) ⊆ O, where R′ ⊆ R and C ′ ⊆ C, is
defined as a FCP if (1) ∀Oij ∈ f,Oij = 1; (2) ∀cj /∈
C ′, ∃ri ∈ R′, Oij = 0; (3) ∀ri /∈ R′,∃cj ∈ C ′, Oij = 0;
and (4) |R′| > minR and |C ′| > minC. In these four
conditions,(1)(2)(3) ensure the pattern f is closed while (4)
ensures f is frequent. For example, in Table I, given that
minR = minC = 2, the pattern f = {r1, r2} × {c2, c3, c4}
is a FCP. However, f ′ = {r1, r2} × {c2, c3} is not a FCP in
that condition (2) is not satisfied.

There are many notable FCP mining algorithms in the
literature. CLOSET [6], CLOSET+ [7], and CIMNC [8] adopt
the FP-tree as the fundamental data structure, while CHARM
[9], CARPENTER [10], and REPT [11] employ the enumer-
ation tree. Although these algorithms perform well on sparse

* Corresponding author

R/C c1 c2 c3 c4
r1 0 1 1 1
r2 1 1 1 1
r3 0 0 1 1

TABLE I: Data Matrix O (minR = minC = 2).

data, they are not suited for data with high density(in this
paper, we will consider a matrix with high density if 30%
or more matrix cells are ones). D-Miner [12] was the first
to employ the space partition tree to process 2D dense data.
Then C-Miner [13] proposed a compressed strategy for large
dataset mining, while CubeMiner [14] was the first to mine 3D
frequent closed patterns from a 3 dimensional cube data, based
on the space partition tree. However, all above algorithms
are limited to process low dimensional (2D/3D) data. With
the emergence of high dimensional data, Data-Peeler [15]
has recently been proposed to mine n-dimensional frequent
closed patterns (nFCP) utilizing the enumeration tree structure.
Although Data-Peeler works well for n-dimensional sparse
data, it does not suit for dense data - it is either inefficient
(i.e., take hours or even days to produce patterns), or may
even fail (i.e., run out of memory). With the emergence of
many high dimensional biological data of high density, we are
motivated to propose an efficient nFCP mining algorithm for
dense data.

In this paper, we propose a novel algorithm called HD-
miner to mine nFCPs from dense datasets. HDminer employs
effective search space partitioning and pruning strategies to
enhance the mining efficiency. Rather than accumulating the
true valued cells as the FP-tree or enumeration tree based
methods, HDminer progressively narrows down the search
space by pruning off the false valued cells, based on the space
partition tree. Since the amount of the false valued cells are
much less than that of the true valued ones for dense datasets,
HDminer would work much more efficient than the FP-tree
or enumeration tree based methods. We have implemented
HDminer, and the performance study on synthetic data and
real dense microarray data shows its superiority over the
most recent algorithm Data-Peeler, even on datasets that are
relatively sparse.

The rest of this paper is organized as follows. In the next
section, we review notable existing works on FCP mining. In
Section III, we provide some preliminaries. Section IV presents
the principles behind HDminer, while Section V proposes the
HDminer algorithm. In Section VI, we report experimental
results obtained from comparing HDminer against Data-Peeler



with synthetic and real biological data. Finally, we conclude
in Section VII.

II. RELATED WORK

There are many notable algorithms for FCP mining, which
can be classified into three categories according to the data
structures used in their algorithms. FP-tree. The FP-tree
structure is widely adopted by CLOSET [6], CLOSET+ [7],
and CIMNC [8]. CLOSET uses a FP-tree for a compressed
representation of the dataset. CLOSET+, an enhanced version
of CLOSET, uses a hybrid tree-projection method to build
conditional projected table in two different ways according
to the density of the dataset. CIMNC maintains additional
information in the FP-tree to avoid closure checking during
FCP mining. Although these algorithms are efficient to process
sparse data, they are limited in mining low dimensional 2D
FCPs.

Enumeration Tree. While CHARM [9] enumerates the
columns for the ”large rows small columns” market data,
CARPENTER [10] changes to enumerate rows for the ”small
rows large columns” biological data with some efficient search
pruning techniques. In [16], COBBLER dynamically switches
between column enumeration and row enumeration depending
on the data characteristic in the mining process. However,
the decision to switch the enumeration strategies at runtime
is costly. Yet another more efficient algorithm REPT [11]
is proposed by traversing the row enumeration tree using a
projected transposed table represented by a prefix tree. All
of these algorithms are limited in mining 2D FCPs. More
recently, Data-Peeler [15] has been proposed to process high
dimensional data, which is the first algorithm to mine nFCPs.
The enumeration tree based algorithms are efficient to process
sparse data.

Space Partition Tree. D-Miner [12] was the first algorithm to
employ the space partition tree for 2D dense data processing.
Then C-Miner [13] proposed a compressed strategy for large
dataset mining. Further, CubeMiner [14] was proposed to mine
3D FCPs. Although these algorithms work efficiently on dense
data, they could process only low dimensional (2D/3D) FCPs.

In summary, algorithms with the FP-tree or enumeration
tree structure are efficient in processing sparse data, in that
their mining strategy is to accumulate the true valued cells
gradually. However, when the data are dense with large number
of true valued cells, too many tree branches are generated,
leading to long processing time and memory bottleneck. On
the contrary, algorithms adopting the space partition tree
progressively narrow down the search space by pruning off
the false valued cells. The denser the data, the less the space
partition tree branches. Hence, the space partition tree structure
is suitable for dense data processing.

As Data-Peeler adopts the enumeration tree structure, it
is inefficient for dense data processing. However, some real
biological data that we used in the performance study are very
dense. Thus, we are motivated to design an algorithm based on
the space partition tree structure for high dimensional dense
data.
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TABLE II: An Example Data Matrix O (size
= 3× 3× 3× 4).

III. PRELIMINARIES

Suppose that the dataset O is composed by n types of
binary features. Each type of features is a feature set of
size di, i = 1, ..., n. Imagining each type of features as one
dimension of the dataset, then the dataset can be regarded as
a high dimensional cube of size d1 × ... × dn. Note that the
features in different dimensions are different. In this paper, we
will call those features as items. Let Di = {Di

1, D
i
2, . . . , D

i
di
}

denote the set of items in the i-th dimension, where the
superscript i represents the dimension ID while the subscript
represents the item ID, and hence Di

m represents the m-th
item on the i-th dimension. An n-dimensional dataset can be
represented by a boolean matrix O = D1 × D2 × . . . × Dn.
Table II shows a 4-dimensional example matrix O of size
3× 3× 3× 4.

Definition 1 (Cutter): Let Ci ⊆ Di be a subset of the item
set in the i-th dimension. For z = C1× ...×Cn, if all cells in
O indexed by z are all valued 0, then z is called a cutter for
O. We simplify the notation of z as z⟨Cn, . . . , Ci, . . . , C1⟩ to
imply the item sets from different dimensions. Z is the whole
cutter set for O. By setting the size of Cn to C1 to be 1, the
cutters can be easily found by checking the 0 cells in O.

As for matrix O in Table II, we aggregate the cutters on D1

in Table III for illustration simplicity. For example, Cutter
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TABLE III: Cutters of O.

Definition 2 (nFCP): A pattern f⟨F 1, . . . , F i, . . . , Fn⟩ ⊆
O is defined as high dimensional frequent closed pattern
(nFCP) if (1) all cells in f are valued “1”; (2) ∀Di

k ∈ Di \F i,
there exist cells valued “0” in the pattern f ′⟨F 1, . . . , F i ∪
Di

k, . . . , F
n⟩; and (3) |F i| ≥ minSupi, where minSupi is

the user specified minimum support threshold of dimension i.

f is called ”closed” pattern if satisfying condition (1)
and (2), and ”frequent” pattern if satisfying condition (3).
Note that a closed pattern cannot be further extended in
any dimension, and hence is maximal/closed in respective
dimensions. For example, f1⟨D4

3, D
3
2D

3
3, D

2
1D

2
2, D

1
1D

1
2⟩ (in

Table II) is not closed as it can be extended in dimension D1

with D1
3 , resulting in f2⟨D4

3, D
3
2D

3
3, D

2
1D

2
2, D

1
1D

1
2D

1
3⟩. Here,

f2 is closed as it cannot be extended in any dimension. And
given minSupi = 1, f2 is an nFCP. Note that the cutters and
the patterns in this paper are denoted in the same fashion, but
it can be told from the context if not specifically mentioned.

Problem Definition: Given an n-dimensional dataset O,
our problem is to discover all high dimensional frequent closed
patterns (nFCPs) with the user specified minimum support
thresholds.

IV. HDMINER PRINCIPLE

In this section, we will present the principles behind
the HDminer algorithm. The space partition tree structure
of HDminer is inspired and extended from CubeMiner [14].
CubeMiner is a special case of HDminer when the dimension
equals to 3. By removing false valued cells from the boolean
dataset, HDminer recursively reduces the search space and
partitions it into subspaces. For efficiency, HDminer prunes
useless subspaces as early as possible by three pruning s-
trategies. Note that the ”search space” here refers to the high
dimensional space of the data presentation, instead of the
feasible set of a problem (e.g., convex optimization problem,
etc.).

A. Search Space Partition

To reduce the search space, false (“0”) valued cells are
removed recursively, resulting in search space partition. To

Zeros
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K

(a) 2D Search Space

(b) 3D Search Space

Fig. 1: Space Partition Principle.

illustrate the space partition principle, we take the 2D and 3D
search spaces in Figure 1 as examples. Given the rectangle
(ABDC) as the 2D boolean matrix (search space), the 2D
closed patterns are actually the maximal rectangles with cells
all valued “1”. Hence, if we could remove the useless “0-cells”
from the 2D matrix, we would narrow the search space dramat-
ically. Let rectangle (AGKE) represent the useless “0-cells”
to be removed. From the edge of (AGKE), two lines EF and
GH are derived, which split the rectangle (ABDC) into two
new subspaces: (CDFE) and (HDBG). Each subspace is
still a rectangle and the equation (CDFE) ∪ (HDBG) =
(ABDC) \ (AGKE) is satisfied. Similarly, the 3D closed
patterns are the maximal cubes with cells all valued “1” in the
3D search space. Let cube O represent the 3D search space
and cube O′ represent the useless “0-cells”. By the face α, β, γ
of O′, O is split into subspace A,B,C respectively, satisfying
α ∪ β ∪ γ = O \ O′. In any of the new subspace, there may
still exist “0-cells”. The same partition principle can be applied
until all “0-cells” are removed. We try to remove as many “0-
cells” as possible in each splitting. Hence, we group “0-cells”
together on the largest dimension for efficiency. For example,
“0-cells” of O (in Table II) shall be grouped on dimension
D1 in that the number of items on D1 is the largest, resulting
in the cutters in Table III. In the following presentation, we
will assume D1 as the largest dimension and will be treated
differently.

According to the space partition principle, HDminer re-
cursively splits the dataset O⟨Dn, . . . , Di, . . . , D1⟩ using the
cutters in Z until all cutters are used and consequently all
cells in each resulting patterns have the value “1”. A cutter
⟨Cn, . . . , Ci, . . . , C1⟩ in Z can be used to cut the search space
O if ∀i ∈ [1, n], Ci ∩Di ̸= ∅. After the cutter is applied, the
search space O is split into n subspaces: the i-th subspace is
denoted as ⟨Dn, . . . , Di\Ci, . . . , D1⟩, i ∈ [1, n]. The recursive
splitting procedure could be illustrated as a space partition



Fig. 2: Part of the Space Partition Tree of Matrix O.

tree, in which a node denotes a subspace of the dataset, and
an edge denotes a cutting process by a particular cutter. In
Figure 2, we show an example of space partition tree processed
by cutters in Table II with minSupi = 2. We only show two
levels of the partition tree in this paper as it is too large to be
filled into the page.

B. Subspace Pruning

Each space split step leads to n subspaces (nodes) of the
space partition tree, but not all subspaces generated in one
split are useful for further splitting. We propose several pruning
strategies to ensure that only the useful subspaces in each level
will be kept in the tree. We define the branches from the root
to a node as the node’s “path”. There are three categories of
useless nodes, referring to Figure 2 as an example:

(a) Nodes that do not satisfy the i-th dimension minimum
support threshold. For example, node g is to be pruned off
as not satisfying minSup2. Nodes of type (a) can be easily
removed by support threshold checking.

(b) The i-th (i ∈ [2, n]) child from Branch k(k ∈ [1, i− 1])
by the cutter whose i-th item has cut the node’s path before.
For example, D3

1 appears in both Cutter 1 and Cutter 2, that
is, the 3-rd item D3

1 of Cutter 2 has cut node f ’s path before,
at the position of Cutter 1, resulting in node b. As such, node
f , the 3-rd child from Branch 2, can be pruned off as it is the
subset of node b. Similarly, node e is to be pruned off as the
subset of node a.

To remove useless nodes of type (b), we maintain a track
set for each node to keep track of the cutter items that have cut
its path. Let TW = {T 2

W , . . . , T i
W , . . . , Tn

W } be the track set of
node W , where T i

W ⊆ Di records the i-th item of the cutters

that have cut node W ’s path. When the i-th (i ∈ [1, n − 1])
child of W is generated by the cutter z⟨Cn, . . . , Ci, . . . , C1⟩,
its track set:

T j
childi

=

{
T j
W , j ∈ [2, i];

T j
W ∪ Cj , j ∈ [i+ 1, n].

That is, the parent’s track set is propagated to the i-th child
with a few updates only on items from T i+1

W to Tn
W . In the

initial status, T i
O = ∅(i ∈ [2, n]) for the root node O. For

example, when node c, the 2-nd child of root O, is generated
by Cutter 1 ⟨D4

1, D
3
1, D

2
1, D

1
4⟩, O’s track set T i

O = ∅(i ∈ [2, 4])
is propagated to T 2

c = ∅, with updates on T 3
c = ∅ ∪ D3

1 and
T 4
c = ∅ ∪ D4

1 , resulting in Tc = {∅, D3
1, D

4
1}. Based on the

track set of the parent, we develop the i-th Track Checking in
Theorem 4.1 to remove useless children of type (b).

Theorem 4.1: i-th Track Checking (i ∈ [2, n]).
Let I⟨Dn

X , . . . , Di
X \ Ci, . . . , D1

X⟩ be the i-th child
of X⟨Dn

X , . . . , Di
X , . . . , D1

X⟩ generated by cutter
z⟨Cn, . . . , Ci, . . . , C1⟩. If Ci ∩ T i

X ̸= ∅, I can be pruned off.

Proof: Since Ci ∩T i
X ̸= ∅, Ci ⊆ T i

X , hence ∃z′⟨C ′n, . . . , Ci,
. . . , C ′1⟩ cuts X’s ancestor A⟨Dn

A, . . . , D
i
A, . . . , D

1
A⟩. Let

S⟨Dn
S , . . . , D

i
S , . . . , D

1
S⟩ be the i-th left sibling of A by cutter

z′. Then, we get Di
S = Di

A \Ci and Dj
A ⊆ Dj

S(j ∈ [1, n], j ̸=
i). Hence, after the application of cutters between z′ and z, the
offspring of S, say X ′⟨Dn

X′ , . . . , Di
X′ , . . . , D1

X′⟩, satisfies the
condition that Di

X′ = Di
X \Ci and Dj

X ⊆ Dj
X′(j ∈ [1, n], j ̸=

i). After z is applied, Ci is removed from the i-th child of X ,
resulting in I . Thus, I ⊆ X ′, and I should be pruned off as a
subset of X ′. 2

For example, node f is the 3-rd child of node c by Cutter 2
⟨D4

1, D
3
1, D

2
2, D

1
4⟩. As T 3

c ∩D3
1 ̸= ∅, node f (subset of node



b) is to be pruned off. Similarly, node e (subset of node a) is
also pruned off by the i-th Track Checking in Theorem 4.1.

(c) Nodes that are not closed in the i-th dimension (i ∈
[2, n]). For example, node h is not closed in the 2-nd dimension
as it is the subset of node d. To remove useless nodes of type
(c), we develop the i-th Dimension Close Checking in Theorem
4.2.

Theorem 4.2: i-th Dimension Close Checking (i ∈ [2, n]).
As for node X⟨Dn

X , . . . , Di
X , . . . , D1

X⟩, ∃Di
k ∈ Di \ Di

X ,
such that ∀z⟨Cn, . . . , Ci, . . . , C1⟩ ∈ Z from root to X , where
Cj ⊆ Dj

X(j ∈ [2, n], j ̸= i), Ci = Di
k, if C1 ∩D1

X = ∅, X is
not closed in the i-th dimension and can be pruned off. During
tree splitting, the i-th branch never satisfies above conditions,
so only the other branches need this checking.

Proof: ∃Di
k ∈ Di \Di

X , such that ∀z⟨Cn, . . . , Ci, . . . , C1⟩ ∈
Z from root to X , where Cj ⊆ Dj

X(j ∈ [2, n], j ̸= i), Ci =
Di

k, C1∩D1
X = ∅, then there exists Y ⟨Dn

X , . . . , Di
X∪Di

k, . . . ,
D1

X⟩, which is the superset of X . Hence, X is not closed in
the i-th dimension and can be pruned off. 2

For example, as for node h, ∀z⟨C4, C3, D2
1, C

1⟩ ∈ Z from
root to h, where C4 ⊆ D4

1D
4
2D

4
3 , and C3 ⊆ D3

1D
3
2D

3
3 , C1 ∩

D1
1D

1
2D

1
3 = ∅ is satisfied. Hence, h is not closed in the 2-nd

dimension and can be pruned off as a subset of node d.

V. ALGORITHM HDMINER

In this section, we present HDminer algorithmically. HD-
miner is a depth-first method to mine high dimensional nFCPs.

Algorithm 1 contains the pseudo-code of HDminer. First,
each item T i

O(i ∈ [2, n]) in the track set TO is initialized
with empty set and the cutter set Z is computed, and then the
recursive function cut() in Algorithm 2 is called to partition
the dataset as well as generate the nFCPs.

Algorithm 1 HDminer

1: HDminer()
2: Global variables: the set of items Di, monotonic constraint

minSupi, i ∈ [1, n].
3: Input: Matrix O
4: Output: ξ the set of nFCPs.
5: T i

O ← empty(), i ∈ [2, n];
6: Z and |Z| are computed from O;
7: ξ ← cut(O,Z, 1, |Z|, Tn

o , . . . , T
i
O, . . . , T

2
O);

Algorithm 2 shows how a node O′⟨D′n, . . . , D′1⟩ is cut
into n branches. It constructs the sets Di(i ∈ [1, n]), and
uses monotonic support threshold constraints simultaneously
on each dimension to reduce the search space. When a cutter in
Z is applied to cut a node, the cutter must satisfy the condition
that each item of the cutter has a non empty intersection with
the corresponding item set of the node; otherwise, cut() is
called with the next cutter (line 6-7).

To build the i-th child O′⟨D′n, . . . , D′i \ Ci, . . . , D′1⟩,
three checks are required: monotonic constraint check
minSupi (D′i \ Ci), the i-th track check (line 10), and the
i-th dimension close check (CloseCheck() in Algorithm 3).
If O′ is not pruned off by the three checks, cut() is called
to process the newly generated O′ recursively with the next

Algorithm 2 Cutting

1: cut(O′, Z, t, |Z|, Tn
O′ , . . . , T i

O′ , . . . , T 2
O′)

2: Input: node O′, cutter list Z, iteration number t, |Z| the
size of Z, T i

O′(i ∈ [2, n]) the track set of O′

3: Output: ξ the set of nFCPs.
4: (Cn, . . . , C1)← Z[t];
5: if t ≤ |Z| then
6: if Ci ∩D′i = ∅, i ∈ [1, n] then
7: ξ ← ξ∪cut(O′, Z, t+1, |Z|, Tn

O′ , . . . , T i
O′ , . . . , T 2

O′);
8: else
9: for all branch i, i ∈ [1, n] do

10: if minSupi(D′i \ Ci) satisfied and Ci ∩ T i
O′ = ∅

then
11: α← CloseCheck(O′ \ Ci, i, Z);
12: if α = 1 then
13: ξ ← ξ ∪ cut((O′ \ Ci, Z, t + 1, |Z|, Tn

O′ ∪
Ci, . . . , T i+1

O′ ∪ Ci, T i
O′ . . . , T 2

O′));
14: end if
15: end if
16: end for
17: end if
18: else
19: ξ ← O′;
20: end if
21: return ξ;

cutter, until all cutters are applied. At the same time, the track
set of O′ is updated.

Algorithm 3 Close Check

1: CloseCheck(O′⟨D′n, . . . , D′i, . . . , D′1⟩, i, Z)
2: Input: node O′⟨D′n, . . . , D′i, . . . , D′1⟩, cutting dimension

i, cutter list Z.
3: Output: flag α.
4: for t = 2 . . . n, t ̸= i do
5: if ∃Di

k ∈ Di\Di
X , such that ∀z⟨Cn, . . . , Ci, . . . , C1⟩ ∈

Z, where Cj ⊆ Dj
X(j ∈ [2, n], j ̸= i), Ci = Di

k, C1 ∩
D1

X = ∅ then
6: α← 0;
7: else
8: α← 1;
9: end if

10: end for
11: return α;

Theorem 5.1: Let nFCPs be the set of frequent closed
patterns of an n-dimensional dataset. Let ξ be the set of leaf
nodes derived from HDminer. Then nFCPs = ξ. In other
words, HDminer can correctly generate all and only all nFCPs.

Proof: First, we prove that nFCPs ⊆ ξ. Let O⟨Dn, . . . , Di,
. . . , D1⟩ be the original database, Z be the whole cutter set
and P be the set of pruned nodes. Since nFCPs ⊆ O, and
in the mining tree building process, only cells valued ’0’ are
removed off by cutters and only useless nodes (subsets of other
nodes) are pruned off (verified by Theorem 4.1 and Theorem
4.2), hence, nFCPs ⊆ O \ Z \ P , that is, nFCPs ⊆ ξ.
Second, we prove ξ ⊆ nFCPs by contradiction. Assume there
exists a leaf A ∈ ξ but A /∈ nFCPs. That is to say, A is a
leaf of the mining tree, and it is either not satisfied by the



Density 0.01% 0.1% 1% 5% 10%
min sup 0.005% 0.05% 0.5% 2.5% 5%

HDminer (sec) 0.2 0.18 0.17 0.31 0.41
Data-Peeler (sec) 675779.34 1658.35 2112.43 2070.59 1942.15

Density 20% 30% 40% 50% 60%
min sup 10% 15% 20% 25% 30%

HDminer (sec) 0.72 0.82 3.33 17.85 5420.33
Data-Peeler (sec) 1941.4 692.49 1272.76 459.61 11424.12

TABLE IV: Experimental Results for Datasets with Different Densities (running time unit is second)

monotonic support constraints or not closed. During the tree
building process, each time a new node is to be generated,
it is checked by the monotonic support constraints. If A is
not satisfied by the monotonic support constraints, it will be
pruned off. Hence, we gather that A is not closed.

Suppose that A⟨Dn
A, . . . , D

i
A, . . . , D

1
A⟩ is not closed in the

Di
A set (i ∈ [1, n]), then there exists A′ = ⟨Dn

A, . . . , D
i
A ∪

D′i
A, . . . , D

1
A⟩, where all cells in A′ are valued by 1. From

the root to A, there should exist a set of cutters Z to cut
off D′i

A, and ∀⟨Cn, . . . , Ci, . . . , C1⟩ ∈ Z, ∃Cj ∩ Dj
A = ∅

(j ∈ [1, n] and j ̸= i). Given any of A’s ancestor B =
⟨Dn

B , . . . , D
j
B, . . . , D

1
B⟩ derived from a cutter ⟨Cn, . . . , Cj ,

. . . , C1⟩ ∈ Z, Cj ∩ Dj
B = α ̸= ∅ (j ̸= i). As such, from

B to A, there must exist cutters (whose j-th item contains α)
to remove α from Dj

B , resulting in Dj
A. As Cj has cut B’s

path before, Cj ⊆ T j
B , where T j

B is B’s j-th track set. Since
α ⊆ Cj , α ⊆ T j

B , then the j-th branch child is pruned off
and hence no A will be generated, which is contrary to the
previous assumption. Hence, we conclude that A is closed.

Now, we have concluded that A is closed and satisfies
all monotonic constraints. Hence, A ∈ nFCPs and our
assumption that there exists a leaf A ∈ ξ but A /∈ nFCPs
is wrong. That is, ξ ⊆ nFCPs. So, our algorithm for mining
nFCPs is correct in that ξ = nFCPs. 2

VI. EXPERIMENTAL RESULTS OF HDMINER

We have implemented the HDminer in C++, and conducted
a performance study to evaluate the efficiency of HDminer
against Data-Peeler[15], which is the most recent and popular
FCP mining algorithm for high dimensional data. To study
the effect of the proposed algorithm on density and high
dimensionality, we use synthetic datasets generated by the IBM
data generator1. Since IBM data generator can only produce
2D dataset, we do a small trick to transform the 2D dataset
into the high dimensional dataset we need. For example, if we
want to generate a dataset with size of 3×3×3×4, which is a
4D dataset, we can first run the IBM data generator to generate
a 2D data with size of 27×4, then we can slice the 2D dataset
into a 4D dataset. Table II gives a good example of how the
2D dataset is sliced into a 4D dataset. We also conducted an
experiment on a real 4D arabidopsis gene expression dataset.
All experiments are run on a Intel Xeon Server with 16 4-core
CPUs of 2.40 GHZ and 24 GB RAM.

A. Varying Data Density

First, we examine the running time of mining nFCP from
datasets with different densities (percentage of ”1”s in the
boolean matrix).

1http://www.cs.umbc.edu/c̃giannel/assoc gen.html

Data Description: The dataset we use to test the scalability
of HDminer is IBM synthetic data. We generate ten Boolean
datasets with size of 10× 10× 10× 10000, and the densities
range from 0.001% to 60% (with different step size).

Experimental Results: We know that the denser the
dataset is, the more patterns the dataset has, given the same
minimum support parameters, and hence, the longer the ex-
periment will take. In the experiments, we tune the minimum
supports in such a way that the experimental results can be
achieved in reasonable time.

Since the minimum supports are different between these
ten datasets, we do not study the running time between these
datasets for the same algorithm. Instead, we only compare the
running time between two algorithms for the same dataset.

The experimental results are shown in Table IV. We can see
that HDminer runs much faster than Data-Peeler with the same
minimum support, especially for dense data. We are intended
to find a density point before which Data-Peeler works better
than HDminer and after which HDminer works better than
Data-Peeler. However, even for sparse data (as sparse as we
tested in the experiments), HDminer is still much faster then
Data-Peeler. For Data-Peeler, notice that for density being 30%
and 50%, the running time decreases. This is because there is
no pattern found for this configuration.

B. Varying Data Size

In this section, we will test the efficiency of HDminer when
the dataset size varies. The way we perform this test is fixing
the density and varying the length of one dimension of the
synthetic data. The density of the dataset we generated is 50%.
The dataset has an original size of 10× 5× 10× 10000. We
change the second dimension from 5 to 20 by a step of 5.
The minimum support for each dimension is set to be 25%.
The running time of this experiment is shown in Figure 3a. We
can see that the running time increases exponentially when the
dataset size increases, and the HDminer takes much less time
to process the data than Data-Peeler.

C. Varying Dimensionality

In this section, we will test the efficiency of HDminer when
the dataset dimensionality varies. We generated 5 sets of data
with the number of dimensions to be 5, 6, 7, 8, 9 and 10. The
size of each dimension is 3, except for the last dimension,
which is 10000. The density is set to be 30%. The running
times of HDminer and Data-Peeler are shown in Figure 3b.
Still, we can see that both the running times of HDminer
and Data-Peeler increase exponentially when the number of
dimension increases, the running time of Data-Peeler is much
higher than that of HDminer.
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5 6 7 8 9 10
−5

0

5

10

15

Dimemsionality

L
o
g
 o

f 
th

e
 R

u
n
n
in

g
 T

im
e

 

 

Data−Peeler

HDminer

(b) Varying Dimensionality
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Fig. 3: Experimental results for varying data size, dimensionality and minimum support (running time unit is second, and the
base of log operation is 2. )

Dimension Itemset
Data source shoots, roots
Treatment cold, drought, genotoxic, heat, osmotic, oxidative, salt, UVB, wound
Time point 15min, 30min, 1h, 3h, 6h, 12h, 24h

Genes 7161 genes

TABLE V: Description of Arabidopsis Gene Expression Itemsets for Each Dimension

D. Parameter Study

In this section, we are going to do a parameter study on
a real world dataset the Arabidopsis Gene Expression Data
to test how the minimum support affects the running time of
HDminer and Data-Peeler.

Data Description: The Arabidopsis Gene Expression Data
are downloaded from Tair2, NASC3 and NCBI4, preprocessed
to form a gene up-regulation data matrix of size 2×9×7×7161.
The density of this dataset is 31.55%. The description of the
itemsets for each dimension is shown in Table V.

Experimental Results: We set the minimum support of
sources, treatments and time points to be 1, 1, 3 to ensure
enough FCPs in the results. The minimum support for gene
dimension is the parameter we focus on. We vary the min sup
for gene dimension from 1% to 15%. The result is shown in
Figure 3c. The running times for both of the Data-Peeler and
HDminer decrease when the minimum support increases, but
the running time for HDminer is much shorter than that for
Data-Peeler.

VII. CONCLUSION

In this paper, we have proposed a novel algorithm HDminer
for mining high dimensional frequent closed patterns (nFCPs)
on dense data. We have employed effective search space parti-
tion and pruning strategies for HDminer to enhance the mining
efficiency. Our performance study on synthetic data and real
dense microarray data shows that HDminer outperforms the
state-of-art algorithm Data-Peeler[15] on dense data scenarios.
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