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Abstract—This paper considers an approach to identify pre-
viously undetected malicious clients in Internet Service Provider
(ISP) networks by combining flow classification with a graph-
based score propagation method. Our approach represents all
HTTP communications between clients and servers as a weighted,
near-bipartite graph, where the nodes correspond to the IP
addresses of clients and servers while the links are their in-
terconnections, weighted according to the output of a flow-based
classifier. We employ a two-phase alternating score propagation
algorithm on the graph to identify suspicious clients in a moni-
tored network. Using a symmetrized weighted adjacency matrix
as its input, we show that our score propagation algorithm is less
vulnerable towards inflating the malicious scores of popular Web
servers with high in-degrees compared to the normalization used
in PageRank, a widely used graph-based method. Experimental
results on a 4-hour network trace collected by a large Internet
service provider showed that incorporating flow information into
score propagation significantly improves the precision of the
algorithm.

I. INTRODUCTION

Malicious attacks on the Internet have been on the rise for

the last few years. According to Symantec’s Internet Security

Threat Report [1], the number of Web attacks in 2012 has

increased by 42% compared to its previous year. Sophisticated

botnets have been widely used in these attacks to coordinate

spam campaigns, launch denial-of-service attacks, or steal

sensitive information. Increasingly, the bot activities are co-

ordinated via sophisticated and stealthy command-and-control

(C&C) channels designed to evade detection by traditional

signature-based Intrusion Detection and Prevention Systems

(IPS/IDS). Detection of such C&C channels is difficult for

many reasons, including the use of: (i) HTTP protocols to

bypass firewalls, (ii) encryption to obscure payloads, and

(iii) “domain fast-flux” to constantly change locations of the

command and control servers. Despite the various evasion

techniques employed by the botnets, one unavoidable aspect

they cannot hide is that the infected clients or bots must

communicate back to their C&C servers. In this regard,

we utilize the IP-address connectivity graph (“who talks to

whom”) to detect the botnets.

Many recent approaches to identify Web attacks have

focused on detecting malicious URLs in general [2], [3],

[4] or more specific threats such as phishing [5], drive-by-

downloads [6] and command and control communication [7].

These approaches rely mostly on analysis of the content of

the downloaded files or the lexical features of URLs used in

the communication. Since they do not consider the network

communication graph, they often fall short in identifying other

infected clients in the network, beyond those involved in

sending HTTP requests for malicious content. Botnet detection

methods that identify hosts engaging in command and control

communication by correlating their sequences of alerts [8]

or clustering their flow-level statistics [9] are also prone to

such problem. Similarly, a signature-based or classifier-based

IDS can only identify malicious clients associated with known

malwares. Such approaches are unable to detect zero-day

malware attacks for which the IDS has no knowledge of their

threat signatures nor labeled examples.

In this paper, we seek to identify previously undetected

malicious clients beyond those found by an IDS by analyzing

the HTTP connections established by the clients in a monitored

network. Our proposed approach leverages the benefits of

both host-based and graph-based methods by combining the

network communication graph, HTTP communication details,

and information about the malicious clients detected by the

IDS to identify additional undetected malicious clients in the

network. First, we represent all the HTTP communication

between the clients and servers as a directed graph, where the

nodes correspond to clients and Web servers, and the links

are directed from client to server nodes. Starting from an

initial set of seed nodes that have been identified as malicious

by a reputed, well-known commercial IDS, we apply a score

propagation algorithm to transmit the score from the seeded

nodes to other unlabeled nodes in the graph. The rationale

here is that nodes that are linked to each other are more likely

to have the same class label (malicious or non-malicious).

Previously undetected nodes with high malicious score after

propagation will be declared as suspicious.

While the idea of using score propagation algorithms for

security-related problems is not new [10] [11], existing ap-

proaches, based on PageRank [12] and other variants of the

random walk algorithm, consider a unipartite graph whose

links are weighted either as a binary 0/1 value, or computed

according to the similarities of their node attributes. Such

approaches cannot be effectively applied to our problem

for the following reasons. First, the HTTP communication

network is a near-bipartite graph, where the majority of the

nodes are either clients or Web servers, but not both. Due
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to the directed links in the graph, existing score propagation

algorithms would propagate scores from clients to servers only,

without considering the propagation from servers to clients.

As a result, servers that are known to host malicious content

will not be able to transmit their malicious scores to the

clients that contact them during the random walk process.

To overcome this problem, we design a two-phase alternating

score-propagation method, which allows the clients and servers

to independently propagate their scores through their outgoing

and incoming links in different rounds.

Second, the standard approach of assigning a binary weight

(1 if there is a connection and 0 otherwise) to each link—

a strategy commonly used in spam detection [12], [10]—is

insufficient to detect the Web attacks. For example, consider

the graph shown in Figure 1(a) in which a malware infected

client (as detected by an IDS) has contacted two Web servers.

During score propagation, these two servers would receive

the same score from the client irrespective of their type of

flows. Suppose the traffic from C1 to S2 contains transmission

of a known malicious file while the traffic from C1 to S1

involves an HTTP request to google.com. One would expect

the malicious score propagated from C1 to S2 to be higher

than that to S1. A binary weighted graph will not distribute the

score disproportionately, which makes S1 equally suspicious

as S2. This example clearly illustrates the need to incorporate

flow-level information into the score propagation algorithm.

Since the flows are associated with the links instead of the

nodes, a key challenge is to convert the flow information into

a link weight that can be utilized by the score propagation

algorithm. Using the node attribute similarity between two

hosts [9] as link weight is also insufficient because a high

similarity score does not necessarily imply that the score

propagated should be high unless the flows between them

were malicious. To overcome this challenge, we employ a

flow-based classifier1 to determine whether the flows through

a link has any similarity with previously observed malicious

flows and use this information to weigh the links between

nodes. This strategy enables us to fuse the HTTP traffic flow

classification results directly into the graph-based algorithm.

For example, consider the graph shown in Figure 1(b), in

which two infected clients, C2 and C3 contacted a malicious

server S3. Suppose both clients also contacted server S4 and

the link weights suggest some of their flows resemble previous

malicious activities. The fact that S4 is contacted only by

infected clients would identify S4 as suspicious. On the other

hand, S5, which was contacted by an infected and a non-

infected client, would accumulate a much lower score as

its link weights since there are no suspicious flows between

the two nodes. This example demonstrates the rationale for

combining communication graph with flow classification in-

formation.

Another potential limitation of using any random walk

based algorithm is the score accumulation by high degree

1This is a supervised classifier, trained offline on the previously IDS-labeled
malicious flows to predict maliciousness score of the flows.

Fig. 1. A toy example illustrating the limitation of applying score propagation
algorithm to a graph whose links have binary 0/1 weights.

nodes. Since most high degree nodes correspond to popular

Web servers such as google.com), this may inadvertently

inflate their malicious scores during score propagation. Even

if the flow-based classifier assigns a low (but non-zero) score

to all the flows associated with the popular server, its overall

malicious score is still high upon propagating and aggregating

the scores from its neighbors. We show that the problem can

be alleviated using a symmetrized weighted adjacency matrix

constructed from the HTTP communication graph.

The main contribution of our paper is the design of a

methodology that combines HTTP connectivity graph with

network traffic flow information to detect previously undetect-

ed malicious clients in a network. Unlike existing methods [9],

[8], our algorithm utilizes the labels provided by an IDS

and the outputs from a flow-based classifier to propagate

the scores of known malicious clients and servers to other

nodes in the network. We evaluated our approach using a 4-

hour network trace from a large Commercial ISP. We showed

that the proposed approach was able to identify previously

undetected clients at higher precision and lower false alarm

rates compared to standard PageRank-like algorithms.

II. RELATED WORK

Most of the recent studies on Web-based attacks have

focused on malicious URL detection. Ma et al. [2] combined

lexical and host-level features to build statistical models for

classifying malicious URLs, while Le et al. [5] relied only on

the lexical features to detect phishing sites. Stokes et al. [4]

leveraged the known malicious sites identified by an anti-

malware software installed on the client machines to flag

other Web pages that are linked to those sites. Zhang et

al. [6] also employed anti-malware software on the client to

generate regular expression of URLs suspected of distributing

malware binaries. In contrast, our work focuses on identify-

ing infected clients as opposed to malicious Web sites. The

existing approaches may complement our work by providing

the initial node labels or link weights for our flow-based score

propagation algorithm.

Another related area of research is in botnet detection [8],

[13], [9], [14], [15]. However, current approaches were lim-

ited to detecting botnets from hosts that were flagged by

anomaly detection systems. They are not designed to identify

malicious clients beyond those exhibiting anomalous network

traffic activities. Graph-based methods have also been ap-

plied to other security-related problems such as fraud and

spam detection[10]. Our work differs from previous graph-
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based approaches for security-related problems in two ways.

First, the graph constructed by our method is near-bipartite,

corresponding to clients and servers participating in HTTP

communication. In addition, our approach combines the out-

puts from an IDS and a flow-based classifier into the score

propagation algorithm. We showed that the combination of

HTTP connectivity and flow-based information outperforms

the results using only link information.

III. OVERVIEW OF SYSTEM ARCHITECTURE

In this section we provide an overview of the proposed

system. We envision the system to be installed at the edge

of an ISP or enterprise network. Our goal is to design a scal-

able system that detects infected clients inside the monitored

network that were previously undetected by the IDS. However,

this system is not for identifying such infected clients on the

fly. We focus rather on the communication graph of the clients

over a time period and analyze if some clients can be linked to

the infected clients based on the sites they have communicated

with. We use a score propagation algorithm to identify such

clients.

Figure 2 shows the overall system architecture. It has

six major components: (i) data capture module, (ii) intru-

sion detection/prevention system (IDS), (iii) feature extraction

module, (iv) Flow classifier, (v) Graph construction and (vi)

score propagation module. The data capture module is a

Narus Semantic Traffic Analyzer (STA) to capture and parse

the HTTP traffic flows needed for constructing the HTTP

communication graph. An IDS is then used to classify the

captured flows as malicious if their payload matches one of

the pre-defined signatures. Otherwise, the unmatched flows

are designated as “unknown”. Flow classifier is a supervised

classifier, discussed in SectionIV-B, computes malicious score

of each network flow. Both the malicious and unknown flows

are then provided to the graph construction module, which

creates a weighted directed graph using the IP addresses of

clients and servers as nodes and the flows between them as

links. A more detailed discussion on the graph construction

process is presented in Section IV-A.

The nodes are initially classified using labels provided

by an IDS (or other available systems). Their initial threat

levels are then propagated to neighboring nodes in the HTTP

connectivity graph, where the propagated scores depend on

both the degrees of the nodes as well as the malicious level

of their flow information. The propagation is repeated until

a maximum number of iterations is reached2. Nodes with

high malicious score after propagation will be declared as

malicious.

System components (i) to (iv) operate on each flow. The

flow-classifier is trained offline and used to predict the mali-

ciousness of each flow. The processes of graph construction

and score propagation are also done offline from the stored

data and can be highly parallelized. The graph is updated

2For our experiments, we found that the algorithm converges in less than
20 iterations.

Fig. 2. Architecture of the proposed system, which uses the flow classification
outputs from an IDS and a biased support vector machine classifier to
construct a weighted directed graph for applying the score propagation
algorithm used to compute the malicious scores of ISP clients.

periodically and assumed to be static within a time period

up to its next update.

IV. METHODOLOGY

This section presents the detailed methodology of our pro-

posed system. First, we describe the construction of the HTTP

communication graph from the network traffic flow data. We

then discuss the flow classification and score propagation

components of the system.

A. Graph Construction

Let G = (V, E) denote a directed graph constructed from

the HTTP connections of our network trace, where V =
{v1, v2, · · · , vn} is the set of nodes associated with the IP

addresses of the clients and servers and E is the set of directed

links. Each link, eij = (vi, vj), is an ordered pair of nodes,

where the head of the link vj corresponds to a server node and

the tail of the link vi corresponds to the client node. Note that

the majority of the nodes derived from our network trace are

either servers or clients with only a handful of them (less than

0.3%) have both incoming and outgoing links. Each node vi
is associated with a numeric score yi ∈ [0, 1] that represents

its threat level or malicious score. Each link eij is associated

with a set of flows πij = {fij1, fij2, · · · , fij|πij |}, where |πij |
is the number of flows between the client-server node pair.

Furthermore, if πij = ∅, then (vi, vj) /∈ E .

The link weight depends on the classification of its asso-

ciated flows. First, we apply an IDS to determine whether

the flows associated with the link are malicious. If any of

the flows fijk is flagged as malicious, then the link weight

is set to 1. Otherwise, a flow-based classifier is invoked.

Let Σij = {σ1, σ2, · · · , σ|πij |} be the outputs of the flow-

level classifier when applied to the flows in πij , where each

σl ∈ [0, 1]. The link weight is determined as follows:

wij =

{
1, if ∃fijk ∈ πij : I(fijk) = 1;

maxσk∈Σij{σk}, otherwise.
(1)

where I(·) denote the output of the IDS, which is equal to

1 if the flow is flagged as malicious, and zero otherwise. In

other words, the weight of a link is given by the maximum

score assigned to its flows according to either the IDS or the

flow-based classifier. This approach is considerably different

from previous graph-based methods applied to security-related
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problems, in which the link weight either represents the

presence or absence of a relationship or weighted according

to the similarity between nodes [16][17]. The latter approach

is inapplicable here since there is no node attribute available

in our HTTP communication graph that would allow us to

compute the pairwise similarity between the nodes. Instead,

we only have a set of flows associated with each link in

the network. Equation (1) enables us to determine the link

weight based on the flow classification results. Furthermore,

we consider the case when the link weight is binary-valued

(0 or 1) as the baseline for comparison in our experiments.

Our experimental results showed that the links weighted

according to the flow-based classification outputs significantly

outperformed the binary weight approach.

Finally, each node vi in the HTTP communication graph

is also assigned an initial threat level y0i based on the IDS

classification of its corresponding flows. If one of its flows

is flagged as malicious by the IDS, then y0i = 1. Otherwise,

its threat level is initialized to zero. The initial scores of the

nodes are used to instantiate the flow-based score propagation

algorithm described in Section IV-C.

B. Classification of Network Flows

Our proposed system employs a flow-based classifier for

two reasons. First, it could detect suspicious flows whose char-

acteristics resemble those of known malwares but are missed

by the IDS. Second, the classifier produces a continuous-

valued output σ that reflects the likelihood of a flow to be

malicious. The output can be normalized to have a range

between 0 and 1 and used as a measure for the link weight,

as shown in Equation (1).

The flow-based classifier is constructed using features ex-

tracted from the HTTP payload3. Constructing such a classifier

is a non-trivial task due to the following two challenges:

• Imbalanced class distribution. The proportion of network

traffic flows belonging to the unknown class far exceeds

those belonging to the malicious class.

• Positive labeled data only. An IDS provides reliable

labels for the positive class only. The class labels for

the rest of the flows are unknown since they can be

non-malicious or correspond to new malwares whose

signatures are unavailable to the IDS.

To address these challenges, we employ a transductive

biased support vector machine (SVM) classifier [19][20][21]

to classify the network traffic flows. Transductive biased SVM

allows the labeled data to contain only examples from a single

(positive) class. Users can also specify a penalty function

to vary the cost of misclassifying instances from different

3In this work, we have extracted features from the payload of all unen-
crypted HTTP connections in the traces. We created 270 features per HTTP
connection, which include hostname length, hostname randomness [18], user
agent, file name requested, file extension, content length, and server response
code. We consider only unencrypted HTTP traffic. If the traffic is encrypted,
the features for the flow classifier will not be available. Nevertheless, there are
other information such as layer-4 traffic information, DNS query information,
etc., that can be utilized to train the classifier. In principle, the flow classifier
can be designed to use these features for classifying encrypted traffic flows.

classes when training the classifier. In this work, the cost for

misclassifying malicious instances as unknown outweigh the

cost for misclassifying unknown instances as malicious.

Let D = {(xi, yi)}mi=1 denote the training set used for

building the classifier, where xi is the feature vector for flow

i and yi is its corresponding class label. The transductive

biased SVM classifier uses a linear model h(x) = ωTφ(x)+b
to classify incoming flows, where ω and b are the model

parameters. The classifier is trained to classify instances using

a linear separating hyperplane in a high-dimensional feature

space φ. The model parameters are estimated by solving the

following constrained optimization problem:

minω,b,yu

1

2
ωTω + Cl

p∑
i=1

ξli + Cu
m∑

j=p+1

ξuj

s.t. yli(ω
Tφ(xl

i) + b) ≥ 1− ξli, ∀i ∈ {1, · · · , p}
yuj (ω

Tφ(xu
j ) + b) ≥ 1− ξuj , ∀j ∈ {p+ 1, · · · ,m}

ξli ≥ 0, ∀i ∈ {1, · · · , p}
ξuj ≥ 0, ∀j ∈ {p+ 1, · · · ,m} (2)

where m is the total number of flows collected and p is the

number of flows labeled as malicious by the IDS. The super-

scripts l and u refer to the labeled (malicious) and unlabeled

(unknown) examples. To build the model, the algorithm first

trains on the labeled data only. It then applies the model to

classify all the unlabeled instances. A threshold τ is then

chosen to determine the high confidence unlabeled instances

to be relabeled as positive class. This procedure is repeated

until there are no significant changes in the labeling.

The transductive biased SVM classifier is flexible because

it accommodates variable cost parameters to deal with the

imbalanced class problem. Specifically, it uses the parameter

Cl as the cost for misclassifying positive examples (i.e., ma-

licious flows) and Cu as the cost for misclassifying unknown

examples (i.e., non-malicious flows). By assigning Cl > Cu,

this will help guide the classifier towards classifying more

accurately training examples that belong to the positive class.

The values of these parameters can be automatically chosen

based on their class proportions or via cross-validation. The

optimization problem can be solved in its dual form using

quadratic programming. This requires the specification of

a kernel function that measures the similarity between the

training examples in a projected Hilbert space[22]. A popular

choice for kernel function is the gaussian kernel, which is

defined as K(x,x′) = exp

[
− ‖x−x′‖2

2γ2

]
.

C. Flow-based Score Propagation

The score propagation algorithm identifies previously unde-

tected malicious nodes in a network by taking into consider-

ation the malicious scores of their neighbors (which in turn,

depend on the scores of their respective neighbors, and so on).

Similar to other graph-based methods [10] [11], it performs

a random walk on a graph to iteratively propagate the scores

across the network. The algorithm is based on the assumption
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that nearby nodes are likely to share similar class labels.

While such an assumption still holds for our case, the scores

must be propagated more judiciously, taking into account the

threat levels of the flows associated with the links, to avoid

generating high false alarm rates. This can be accomplished

by using the flow classification outputs as the link weights for

the HTTP communication graph. As noted in Section IV-A, if

the flows associated with the link look suspicious, the weight

of the link increases, thereby increasing the proportion of

malicious score transmitted via the link.

More formally, our flow-based score propagation algorithm

is designed to minimize the following objective function:

Q(y) =
1

2

∑
ij

Wij

[
yi√
Dii

− yj√
Djj

]2

+
μ

2

∑
i

(yi − y
(0)
i )2, (3)

where W is a |V| × |V| matrix computed using Equation

(1) and D is a diagonal matrix whose diagonal elements are

given by Dii =
∑

j Wij . The column vector y represents

the threat levels of the nodes and y(0) is its initial value

determined from the outputs of the IDS. Specifically, if a

flow between client i to server j is detected to be malicious

by an IDS, then both y
(0)
i and y

(0)
j will be initialized to 1.

Otherwise, they are set to 0. Intuitively, the first term in the

objective function ensures that the malicious scores for any

pair of nodes connected by a highly weighted link should not

differ substantially. The second term ensures that the scores

of the nodes should not deviate significantly from their initial

values. The objective function is similar to the one used in [16]

for graph-based semi-supervised learning, except our weight

matrix is computed from the flow classification outputs rather

than the similarity between node attributes.

Next, we will illustrate the difference between the proposed

score propagation algorithm and existing random walk al-

gorithms such as PageRank. Our objective function can be

rewritten in the following form:

Q(y) =
1

2

[∑
i

y2i − 2
∑
ij

yi
Wij√

Dii

√
Djj

yj +
∑
j

y2j

]

+
μ

2

∑
i

(yi − y
(0)
i )2 (4)

This can be further simplified into matrix notation as:

Q(y) = yT (I−D− 1
2WD− 1

2 )y +
μ

2
‖y − y(0)‖2

= yT L̂y +
μ

2
‖y − y(0)‖2 (5)

where L̂ = I − D− 1
2WD− 1

2 = D− 1
2 (D − W)D− 1

2 is the

normalized graph Laplacian matrix of the network.

To optimize the objective function, we take its partial

derivative with respective to y and set it to zero:

∂Q(y)

∂y
= (I−D− 1

2WD− 1
2 )y + μ(y − y(0))

= (1 + μ)y −D− 1
2WD− 1

2y − μy(0) = 0

The preceding equation can be re-written in the form of an

iterative update formula:

y =
1

1 + μ
Ŵy +

μ

1 + μ
y(0) = βŴy + (1− β)y(0) (6)

where Ŵ = D− 1
2WD− 1

2 is the symmetrized weighted

adjacency matrix and β = 1
1+μ controls the tradeoff between

biasing the scores towards to the graph structure as opposed to

the initial vector y0. If β = 0, the malicious scores are equal

to the initial values obtained from IDS. On the other hand,

if β = 1, the malicious score of a node depends only on the

scores of its neighbors. For Web graphs, β is often set to 0.85

[12]. We use the same value in our experiments.

Though Equation (6) looks similar to the formula used in the

PageRank algorithm [12], there is a subtle difference between

the two in terms of how the adjacency matrix is normalized.

In PageRank and other random-walk based algorithms, the

adjacency matrix is transformed into a transition probability

matrix with the following normalization Ŵrw = D−1W, to

ensure each row of the matrix sums up to 1. Instead, our

approach normalizes the adjacency matrix by dividing each

entry in the matrix with the degrees of both nodes connected

by the link. As will be shown in our experiments (see Section

VI-C), this normalization strategy helps to reduce the ill-

effects of popular server nodes that have a large number of

incoming connections, which can lead to high false alarm rates

when applying the PageRank algorithm.

Finally, we consider a two-phase flow-based score propa-

gation algorithm, which is more suited for the near-bipartite

graph constructed for this domain. To simplify the discussion,

we first assume the client and server nodes are disjoint. The

symmetrized weighted adjacency matrix can be decomposed

into the following block structure: Ŵ =

[
0 Ŵ (sc)

Ŵ (cs) 0

]
,

y =

[
y(c)

y(s)

]
and y(0) =

[
y(c)(0)

y(s)(0)

]
, where Ŵ (sc) is the

adjacency matrix obtained by reversing the direction of the

links from servers to clients. The update formula can be

simplified to the following two subproblems:

y(c) = βŴ(sc)y(s) + (1− β)y(c)(0) (7)

y(s) = βŴ(cs)y(c) + (1− β)y(s)(0) (8)

where y(c) and y(s) are the score vectors for the two disjoint

sets of nodes (e.g., clients and servers) in the bipartite graph.

Our flow-based score propagation approach is now a two-

phase algorithm. During the client propagation phase, the

scores of the clients will be propagated to the servers by

following their outgoing links. During the server propagation

phase, the scores of the servers will be propagated to the clients

in the reverse direction (i.e., by traversing in the opposite

direction of their incoming links). Since most of the nodes are

either clients or servers, their scores get updated only once in

each round (during the client or server propagation phases).

For nodes that are both clients and servers, their scores will be

updated twice in each round to take into account the malicious

scores of their neighboring servers and clients.
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The pseudocode of our score propagation method is shown

in Algorithm 1. The run-time complexity is O(K(|V|s|V|c),
where K is maximum number of iterations, |Vs| and |Vc| are

the number of server and client nodes in the graph, respec-

tively. For sparse matrices, the complexity can be reduced to

O(K|E|), where |E| is the number of edges in the network.

Algorithm 1 Flow-based Score Propagation

Input: G = (V,E), y(0), and maximum iteration K

Output: y=

[
y(c)

y(s)

]
, malicious scores of the nodes in G

Construct Ŵ using Equation (1)
for i = 1 to K do

Update client scores y(c) using Equation (7)

Update server scores y(s) using Equation (8)

end for
Return y

V. EXPERIMENTAL SETUP

This section describes the data sets, our methodology for

verifying the ground truth labels, and the evaluation metrics

used to compare the performance of various approaches.

A. Data Sets

We evaluated the proposed system on a network trace

collected at the edge of a point of presence (PoP) in a large

Commercial ISP. There are close to 20000 distinct IP addresses

inside the PoP. We focus our analysis on four 1-hour data sets

from the original trace, which we denote as D1, D2, D3 and

D4. We provide the detailed information in Table I.

The initial labels for the nodes are obtained using a com-

mercial signature-based IDS. The IDS assigns a threat ID to

those HTTP connections where the payload matches a pre-

defined signature. In our traces, the IDS has identified HTTP

connections matching traffic from various threats, such as

Skintrim, Sality, Conficker, Tidserv and Spyeye. The number

of malicious flows as well as malicious clients and servers

detected using the IDS are shown in Table I.

B. Ground Truth Labels

Finding reliable ground truth for the nodes is a difficult

problem by itself. In this work, we rely on our domain experts

to confirm that the undetected malicious clients discovered by

our approach are indeed malicious. The following data sources

were used by the domain experts to verify the results: (i)

Google’s SafeBrowsing [23]. A service that Google provides

to check for malware and phishing Web sites. One problem

with SafeBrowsing is that it only stores sites that have been

recently discovered as malicious (up to 90 days). For sites

that were malicious more than 90 days in the past and are

now offline or that have been cleaned up, SafeBrowsing may

not provide any information; (ii) Web of Trust (WOT) [24]. A

service that calculates the reputation of sites based on ratings

from Web users and technical sources. WOT provides four

different scores—trustworthiness, vendor reliability, privacy

and child safety. Each of them ranges from 0 to 100, with

0 being most malicious. In our evaluation, we use only the

first three scores from WOT ignoring the child safety score.

A problem with WOT is that some sites, such as those used for

rogue adwares, may be given a very low reputation score. Also,

WOT scores can be missing for some sites. (iii) Blacklists. We

use four blacklists from malwaredomainlist [25], malwaredo-

mains [26], phishtank [27] and zeus-tracker [28]. In general,

blacklists are known to have high false negatives.

C. Evaluation Metrics

Our analysis focuses on classifying previously undetected

clients inside the network. To verify if a given client is sus-

picious, we first check if it connects to any known malicious

Web sites. More specifically, if the IP address or the hostname

of the Web site appears in SafeBrowsing or any blacklist,

the site is flagged as malicious, and subsequently, any clients

initiating connection to it is also considered suspicious. If none

of the sites contacted by the client is malicious, we examine

the sites’ WOT scores. We consider a site to be malicious if

its maximum WOT score4 is below 10.

To increase our confidence in verifying whether a client is

indeed malicious, we apply a minimum threshold (Num) on

the number of the sites with low WOT scores contacted by the

client. If the number of sites exceeds the threshold, the client

is flagged as malicious. We report our experimental results

for Num = 1, 5, 10. We rank the clients according to the

malicious score after score propagation and compared them to

the list of flagged clients. The precision of top n ranked clients

is used to indicate the performance of different algorithms. We

vary n from 1 to 200 and plot the precision curves.

VI. EXPERIMENTAL RESULTS

In this section, we compared the performance of our pro-

posed flow-based score propagation algorithm against two

baseline approaches. The first baseline, termed as as link-only
method, is used in Sections VI-A and VI-B to demonstrate the

effectiveness of using flow-based classifier’s output to weigh

the links of the network. The link-only method is similar to

our approach except it uses a binary 0/1 weight for its links.

The second baseline, used in Section VI-C, considers the same

normalization strategy as PageRank and other random walk

methods. The link weights for the graph used by the second

baseline method are provided by the flow-based classifier,

which is equivalent to our score propagation method.

All the experiments were performed on a single PC with

Intel Core i7 CPU 2.67 GHz and 8GB memory, running

Windows 7 operating system. The run time on the datasets

D1 ∼ D4 is shown in Table I. Even with the largest dataset,

the algorithm converges in less than 190 seconds.

A. Performance Comparison for all Clients

Figure 3 compares the average precision of our flow-based

score propagation approach against the link-only method. Each

row corresponds to one of the four data sets used in this study

while the columns show the results when the Num threshold

4WOT considers a Web site with any score below 20 as very poor.
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TABLE I
DESCRIPTION OF FOUR HOURLY DATA SETS (D1 ∼ D4) USED IN OUR EXPERIMENTS

Data set Number
of Edges

Number of malicious flows/
Total number of flows

Number of malicious clients/
Total number of clients

Number of malicious servers/
Total number of servers

Run Time
(seconds)

D1 377699 1088 / 1926620 26 / 5856 25 / 25627 142.8
D2 419502 1649 / 973271 30 / 6533 25 / 26346 167.4
D3 478449 1736 / 1033292 26 / 7360 22 / 26216 171.6
D4 525438 65 / 1078765 21 / 7936 23 / 27518 184.9
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Fig. 3. Average precision at top n clients comparison between link-only and flow based methods on data D1 ∼ D4

(described in Section V-C) is varied from 1 to 10. In each

diagram, the horizontal axis corresponds n (the number of

highest ranked clients examined) while the vertical axis shows

the average precision of the top-n selected clients. The results

suggest that both approaches can identify malicious clients

that were previously undetected by the IDS, which had found

only between 21-30 malicious clients on the different data

sets (see column 4 in Table I). Furthermore, our flow-based

approach significantly outperforms the link-only method on

all four datasets. For example, out of the 5856 clients in

D1, if we consider the precision for top 200 clients with

Num = 1, our proposed method achieves a precision value

close to 98% whereas the precision for the link-only method

is around 94%. When we set the confidence threshold to

Num = 5, the precision for our approach is close to 75%,

whereas the precision for link-only method drops significantly

to less than 70%. The difference is even more pronounced

when we increase Num to 10. Note that a higher threshold

for Num means a stricter condition for labeling a client as

malicious. In all cases, our results clearly demonstrate the

superiority of our flow-based score propagation method.

Figure 4 shows an example illustrating the advantage of

using flow-based instead of link-only propagation. The plot

considers only nodes located two hops away from the client

node #102051. The red nodes in the diagram represent those

were flagged as malicious by the IDS while the grey nodes

represent the unlabeled ones. In this case, node #102051

was not classified as malicious by the IDS nor the link-only

method. even though it was later verified to be malicious. The

node is connected to a server node (#108194) that was flagged

as malicious by the IDS. However, the rest neighbors of node

#102051 were not flagged by the IDS. Since the weights of

Fig. 4. HTTP communication subgraph around node #102051

the links are the same, the scores propagated to the client from

other server nodes using link-only method are low, which is

why the link-only method fails to identify it as malicious.

On the other hand, the flow-based approach assigns a higher

weight to the link between nodes #108194 and #102051,

allowing a significant proportion of the malicious scores

to be transmitted along this link. This raises the malicious

score of node #102051 significantly, making it one of the

highest ranked nodes after flow-based propagation. Subsequent

investigation confirmed that client #102051 is indeed infected.

B. Performance Comparison of Clients Indirectly Connected
to Malicious Sites

The results shown in the previous section considers all the

clients, including those that are directly connected to nodes

flagged as malicious by the IDS. In this subsection, we analyze

the results for identifying previously undetected malicious

clients that are not directly connected to any malicious nodes

labeled by the IDS. For example, in data set D2, there are

176 such clients identified among the top 200 clients found

by the link-only method, while in the ranking provided by
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Fig. 5. Average precision at top n highest ranked clients that are indirectly
connected to malicious hosts

the flow based method, there are 187 such clients. The top-

200 precision for both methods are reported in Figure 5,

which looks quite similar to the results shown in the previous

subsection. The precision is relatively high in top 200 clients,

which suggests that the algorithm places most of the malicious

clients at the top of the ordering. The result also confirms that

our proposed method is not only capable of finding malicious

clients directly connected to nodes flagged by the IDS but also

those located further away.

C. Comparing Flow-based Score Propagation against Ran-
dom Walk Propagation

As mentioned in Section IV-C, the proposed flow-based

score propagation differs from PageRank and other random

walk algorithms in terms of how the adjacency matrix is

normalized. Our proposed normalization is desirable because

it takes into consideration the in-degree of the server n-

odes. Thus, popular servers with high in-degrees will have

their link weight significantly reduced compared to random

walk based methods. For example, a popular website like

google.com, will be highly ranked using the random walk

based normalization due to its high in-degree. However, the

symmetric normalization used by our method was able to

reduce its malicious score considerably. Finally, among the

top 100 highest ranked server nodes detected by the flow-

based score propagation method, the precision for symmetric

normalization is 63%, while the precision using PageRank type

of normalization is only 51%.

VII. CONCLUSIONS

This paper presents a novel approach to combine the HTTP

communication graph with flow information to effectively

identify malicious ISP clients not identified by the IDS. Our

approach employed a flow-based score propagation algorithm

to identify previously undetected malicious clients in the moni-

tored network. Experimental results using real-world data from

a large Commercial ISP showed that the proposed method

helps to enhance the detection of malicious clients without

incurring a high false alarm rate due to popular servers.
Although the results look promising, the methodology can

still be improved in several ways. First, the flow classifier

can be extended to incorporate layer-4 features in order to

deal with encrypted HTTP traffic. Second, although it can

effectively detect malicious clients, we can extend it to detect

malicious servers that reside outside the monitored network

and only have partial HTTP connectivity profile available.
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